
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A BXtendDSL Solution to the TTC2023 Incremental MTL vs. GPLs
Case

Thomas Buchmann
thomas.buchmann@th-deg.de

Deggendorf Institute of Technology
Deggendorf, GER

ABSTRACT
This paper presents a solution to the Case at TTC 2023 using BX-
tendDSL. BXtendDSL is hybrid language for bidirectional and incre-
mental model transformations, allowing transformation developers
to specify model transformations on the declarative and imperative
level, allowing for maximum expressive power to tackle all possible
transformation problems.

CCS CONCEPTS
• Software and its engineering → Domain specific languages.

KEYWORDS
incremental transformations,Model Transformation Language, GPL,
Class model, relational data schema

ACM Reference Format:
Thomas Buchmann. 2023. A BXtendDSL Solution to the TTC2023 Incremen-
tal MTL vs. GPLs Case. In Proceedings of 15th Transformation Tool Contest
(TTC’23). ACM, New York, NY, USA, 4 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
The transformation case addresses a comparison between dedi-
cated model transformation languages (MTLs) and general purpose
programming languages (GPLs) in the context of an incremental
transformation of Class models into Relational Data Schemas. Since
model transformation languages typically are domain-specific lan-
guages tailored to efficiently express model-to-model transforma-
tions, they comprise high-level constructs like rules and automatic
support for traceability which are missing in GPLs. Furthermore,
MTLs often provide different modes of execution: In a batch trans-
formation, the input model is transformed and an output model is
produced. An incremental transformation on the other hand is able
to propagate changes from the input model to the output model
while retaining changes in the output model. Some MTLs also sup-
port for bidirectional transformations, i.e., the output model maybe
transformed back into the input model and vice versa.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TTC’23, July 20, 2023, Leicester, UK
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $0.00
https://doi.org/XXXXXXX.XXXXXXX

During the last decades, a wide range ofMTLs and accompanying
tool support has been proposed, however, many model transforma-
tions in practice are still written in GPLs. While there are reasons
for this situation in the context of the batch execution of a transfor-
mation, an incremental transformation has different requirements
and should shift the focus towards dedicated MTLs.

The proposed case addresses an incremental transformation
scenario of class diagrams into relational data schemas with the
aim to compare solutions written in MTLs with solutions written
in GPLs.

In this paper, we present our solution to the proposed transfor-
mation case using BXtendDSL [2, 4, 5] – our hybrid language for
bidirectional and incremental model transformations.

2 BXTENDDSL
BXtendDSL [2, 4, 5] is a state-based framework for defining and exe-
cuting bidirectional incremental model transformations on demand
that is based on EMF [6] and the programming language Xtend1.
It builds upon BXtend [3], a framework that follows a pragmatic
approach to programming bidirectional transformations, with a spe-
cial emphasis on problems encountered in the practical application
of existing bidirectional transformation languages and tools.

When working with the stand-alone BXtend framework, the
transformation developer needs to specify both transformation
directions separately, resulting in BXtend transformation rules with
a significant portion of repetitive code.

To this end, BXtendDSL adds a declarative layer on top of the BX-
tend framework, which significantly reduces the effort required by
the transformation developer. Figure 1 depicts the layered approach
of our tool: First, the external DSL (BXtendDSL Declarative) is used
to specify correspondences declaratively. Second, the internal DSL
(BXtendDSL Imperative) is employed to add algorithmic details of
the transformation that can not be expressed on the declarative
layer adequately.

The handwritten code and the generated code are combined with
framework code to provide for an executable transformation. The
transformation developer is relieved from writing repetitive routine
parts of the transformation manually using a code generator. The
generated code ensures roundtrip properties for simple parts of the
transformation. Since the declarative DSL usually is not expressive
enough to solve the transformation problem at hand completely,
the generated code must be combined with handwritten imperative
code. Certain language constructs of the declarative DSL define the
interface between the declarative and the imperative parts of the
transformation. From these constructs, hook methods are generated,
the bodies of which must be manually implemented. Hook methods

1https://eclipse.dev/Xtext/xtend/
1

https://orcid.org/0000-0002-5675-6339
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

TTC’23, July 20, 2023, Leicester, UK T. Buchmann

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Transformation code
(BXtendDSL Declarative)

Hand written code
(BXtendDSL Imperative)

Generated code
(BXtend)

Framework code
(BXtend)

+

Transformation code
(BXtend)

Transformation
developer

Source model
Correspondence

model
Target model

Figure 1: Layered approach used in BXtendDSL

are used, e.g. for implementing filters or actions to be executed in
response to the deletion or creation of objects, etc.

Incremental change propagation relies on a persistently stored
correspondence model, which allows for m : n correspondences be-
tween source and target model elements. A powerful internal DSL
may be used at the imperative level, to retrieve correspondence
model elements associated with a given element from the source
and target models, respectively. Please note that the transformation
developer does not have to deal with managing correspondences
at the declarative level, rather all the algorithmic details of man-
aging the correspondence model are handled by our framework
automatically.

3 SOLUTION
In this section, we explain the details of our BXtendDSL solution
for the Class into Relational Data Schema case. We will discuss the
different layers in separate subsections. Please note that incremen-
tal behavior is provided automatically by our framework, so the
transformation developer does not need to address it specifically.

3.1 Declarative Layer
BXtendDSL code at the declarative layer is used to define trans-
formation rules between elements of source and target models
respectively. Listing 1 depicts the code for the transformation at
the declarative layer. Since the transformation is unidirectional, all
mappings are directed from source (Class) to target (Relational)
model, indicated by the –> symbol.

1 sourcemodel "Class"
2 targetmodel "Relational"
3
4 rule DataType2Type
5 src DataType dt;
6 trg Type t;
7
8 dt.name --> t.name;
9
10 rule SingleAttribute2Column
11 src Attribute att | filter;
12 trg Column col;
13
14 att.name --> col.name;
15 {att.type : DataType2Type} --> {col.type : DataType2Type };

16
17 rule MultiAttribute2Table
18 src Attribute att | filter;
19 trg Table tbl;
20
21 att.name att.owner --> tbl.name;
22 att.name att.type att.owner --> tbl.col;
23
24 rule SingleClassAttribute2Column
25 src Attribute att | filter;
26 trg Column col;
27
28 att.name att.type --> col.name;
29 att.name att.type --> col.type;
30
31 rule MultiClassAttribute2Column
32 src Attribute att | filter;
33 trg Table t;
34 Column id | creation;
35 Column fk | creation;
36
37 att.name att.owner --> t.name;
38 att.name att.owner --> id.name;
39 att.name att.owner --> fk.name;
40
41 rule Class2Table
42 src Class clz;
43 trg Table tbl | creation;
44
45 clz.name --> tbl.name;
46 {clz.attr : SingleAttribute2Column , SingleClassAttribute2Column ,

MultiAttribute2Table} --> tbl.col;

Listing 1: BXtendDSL code at the declarative layer

The declarative transformation specification comprises rules for
all required model elements. Each rule is composed of src and trg
patterns with elements of source and target models, respectively.
Some patterns make use of modifiers, such as filter and creation.
Those modifiers are transformed into hook methods, whose bod-
ies need to be implemented by the transformation developer on
the imperative layer (see, Section 3.2). After declarting src and trg
patterns, the mapping of attributes and references is specified by
mappings. As explained above, we only use directed mappings in
this transformation (–>). Lines 4-8 depict the transformation rule
for DataTypes and Types. A DataType object from the class model is
mapped to a Type object in the relational model and the datatype
name is assigned to the attribute name of the Type.

Rule singleAttribute2Column employs a filtermodifier on the source
pattern. This is required to indicate that the rule should only be
applied to Attributes that are singlevalued and whose type refers to
a DataType. Please note that no algorithmic details for the filter are
specified on the declarative level, since this would have required a
much more expressive and thus complex language. Rather a hook
method is generated and the behavior is specified on the imperative
layer using the Xtend programming language (see Section 3.2).

Furthermore, themapping in Line 15 is enclosed in curly brackets.
This indicates, that references to already transformed elements
should be used and retrieved from the correspondence model. The
execution of the rules follows the textual order as specified in
the declarative specification, i.e. the rule DataType2Type is actually
executed before the rule SingleAttribute2Column, which means that
when we want to apply the mapping, we can be sure that the
respective types already exist in the target model and we can easily
retrieve them from the correspondence model (i.e., the trace model).

In case that the types of structural features used in the mapping
is not compatible, a hook method is also generated. As well in cases
where more than one structural feature is used on either side of the
arrow symbol (e.g. in Line 21 of Listing 1).

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A BXtendDSL Solution to the TTC2023 Incremental MTL vs. GPLs Case TTC’23, July 20, 2023, Leicester, UK

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Please note that source or target patterns may consist of more
then one element, as shown e.g. in Lines 33-35. If a multivalued
attribute with a type reference that is not a datatype is transformed,
a new table consisting an objectID and a foreign key should be
created. For the two columns a creation modifier is used, which
allows the transformation developer to add additional imperative
code that is executed after new elements have been created (in our
case, the columns get the required type reference and are added to
the parent table).

The last rule that is executed is Class2Table. When this rule is
executed, all columns that have been transformed because other
rules have been applied, actually exist and can be assigned to the
proper tables in the mapping depicted in Line 46.

3.2 Imperative Layer
On the imperative layer, the bodies for hook methods must be
supplied. This holds for the specification of modifiers (e.g., filter
or creation), as well as for mappings where further information is
required, which cannot be supplied using the declarative language
only.

Listing 2: Hook method for mapping filtering attributes
1 override protected filterAtt(Attribute att) {
2 (att.isMultiValued) && (att.type instanceof Class)
3 }

Listing 2 depicts the implementation of a filter, specified on
the declarative layer in the rule MultiAttribute2Column (see Line
32, Listing 1). The rule should only consider attributes which are
multivalued and whose type is a Class. Similar implementations
have been supplied for the other filter modifiers.

Listing 3: Creation hook
1 override protected onIdCreation(Column id) {
2 id.type = Utils.getType(findIntegerDatatype ())
3 id.corr.target ().t.col += id
4 }

Listing 3 depicts the implementation of a creation hook method.
Using creation modifiers on the declarative layer results in the gen-
eration of respective methods, that need to be implemented on the
imperative layer. The method shown in Listing 3, is called when
the id Column is created during the exeuction of rule MultiClassAt-
tribute2Column (see Line 34 in Listing 1). The id column has Integer
type and the respective Object is retrieved by the utility methods
getType() and findIntegerDatatype(), which have been added to the
imperative layer manually. Finally, the column is added to its parent
table’s reference col.

Listing 4: Hook method for feature mapping
1 override protected colFrom(String attName ,
2 Classifier type , Class owner) {
3 val colList = newArrayList
4 val idCol = RelationalFactory.eINSTANCE
5 .createColumn () => [
6 name = owner.name.toFirstLower + "Id"
7 type = Utils.getType(findIntegerDatatype ())
8]
9 val valCol = RelationalFactory.eINSTANCE
10 .createColumn () => [
11 name = attName
12 type = Utils.getType(type)
13]

14 colList += idCol
15 colList += valCol
16 return new Type4col(colList)
17 }

Listing 4 depicts the hook method that is created as a result
of the feature mapping defined in Line 22 of Listing 1. The rule
MultiAttribute2Table is called, when a multivalued attribute with
a primitive type is transformed into a Table with id-Column and
value-Column. Please note that in the declarative specification, only
the target table is created, the corresponding columns are then
created in the hook method. The required information to create the
columns is passed to the hook method as input parameters. The
hook method is required to return a predefined Xtend @Data-class.
When creating the columns and assigning the respective types, the
Utility methods explained above are reused.

Listing 5: Hook method for mapping attribute type + name
to table name

1 override protected tblNameFrom(String attName ,
2 Class owner) {
3 var tblName = owner.name
4 if (tblName === null || tblName === "") tblName = "Table"
5 new Type4tblName(owner.name + "_" + attName)
6 }

Listing 5 depicts another hook method which is created because
two features on the source side (Attribute.name and Attribute.owner)
are mapped to a single feature on the target side (Table.name). The
method stub is generated as a result of the statement specified in
Line 21 of Listing 1. In the imperative implementation of the hook,
we check if the owner has a name value. If this is the case it is
concatenated with the attribute name, otherwise we use the prefix
"Table" and concatenate it with the attribute name.

Listing 6: Hook method for adding all columns to the right
tables

1 override protected colFrom(List <Column > attSinCol ,
2 List <Column > attSinCol_2 , List <Table > attMulT ,
3 Table parent) {
4 val columnsList = newArrayList
5 if (! parent.col.empty) {
6 var key = parent.col.get(0)
7 columnsList += key
8 }
9
10 for (Column c : attSinCol) {
11 var obj = unwrap(c.corr.
12 source.get(0) as SingleElem) as Attribute
13 if (obj.type !== null) {
14 columnsList += c
15 } else {
16 c.owner = null
17 EcoreUtil.delete(c, true)
18 }
19 }
20
21 for (Column c : attSinCol_2) {
22 var obj = unwrap(c.corr.
23 source.get(0) as SingleElem) as Attribute
24 if (obj.type !== null)
25 columnsList += c
26 else EcoreUtil.delete(c, true)
27 }
28 for (Table t : attMulT) {
29 var obj = unwrap(t.corr.
30 source.get(0) as SingleElem) as Attribute
31 if (obj.type === null)
32 EcoreUtil.delete(t, true);

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

TTC’23, July 20, 2023, Leicester, UK T. Buchmann

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

33 }
34 new Type4col(columnsList)
35 }

Finally, the last Listing discussed in this paper is shown in Listing
6. The method stub is generated as a result of the feature mapping
depicted in Line 46 of Listing 1. It is used to assign all columns to
their respective parent tables. Furthermore, we address handling
the dangling references in the code specified in the imperative layer.
Lists of columns and tables, that have been transformed when the
other rules have been applied are passed as method parameters.
Before adding the respective column to the resulting data object
(Type4col), we make sure that its associated source object actually
has a non-null type-reference. If the associated type is null, we
delete the column.

4 EVALUATION
In order to evaluate the solution, solution providers are requested to
integrate it into the given framework. For technical reasons, it was
not possible (yet) to integrate the BXtendDSL solution directly to the
framework. Thus, we provide an additional project BXtendDSLSo-
lutionRunner in our GitHub repository, which programmatically
initializes the requires source models, applies the changes specified
in the changes models, executes the transformation and saves the
obtained target models in the respective folders. We compared the
obtained models with the provided expected models and they seem
to be both correct and complete according to the evaluation criteria
requested in the case description.

We labeled the solution asmuch as possible. Please note thatmost
of the code that deals with model traversal is generated and does
not need to be supplied manually by the transformation developer.
The same holds for code that ensures incrementality.

Regarding performance, the provided models are too small to
obtain sounding results for execution times, as they are around
several milliseconds. In other (and larger performance tests), BX-
tendDSL has already proven to scale excellent with growing model
sizes [1, 4].

5 CONCLUSION
In this paper, we described our BXtendDSL solution to the Incre-
mental MTL vs. GPLs Case. Due to technical reasons, we were
unable to run the automated tests, but we thoroughly tested each
of the sample models provided, and manually compared the results
obtained from our transformation with the expected ones.

The transformation case also helped to reveal a bug in our code
generation engine, which will be fixed in the upcoming release of
BXtendDSL. Please follow the instructions given in the README
file of the public Git repository in order to get the BXtendDSL
solution to compile without errors.

RESOURCES
The BXtendDSL solution may be obtained from a public GitHub
repository, which can be found at https://github.com/tbuchmann/
Incremental-class2relational.

REFERENCES
[1] Anthony Anjorin, Thomas Buchmann, Bernhard Westfechtel, Zinovy Diskin,

Hsiang-Shang Ko, Romina Eramo, Georg Hinkel, Leila Samimi-Dehkordi, and
Albert Zündorf. 2020. Benchmarking bidirectional transformations: theory, im-
plementation, application, and assessment. Software and Systems Modeling 19, 3
(May 2020), 647–691. https://doi.org/10.1007/s10270-019-00752-x

[2] Matthias Bank, Thomas Buchmann, and Bernhard Westfechtel. 2021. Combining
a Declarative Language and an Imperative Language for Bidirectional Incremental
Model Transformations. In Proceedings of the 9th International Conference on
Model-Driven Engineering and Software Development, MODELSWARD 2021, Online
Streaming, February 8-10, 2021, Slimane Hammoudi, Luís Ferreira Pires, Edwin
Seidewitz, and Richard Soley (Eds.). SCITEPRESS, 15–27. https://doi.org/10.5220/
0010188200150027

[3] Thomas Buchmann. 2018. BXtend - A Framework for (Bidirectional) Incremen-
tal Model Transformations. In Proceedings of the 6th International Conference on
Model-Driven Engineering and Software Development, MODELSWARD 2018, Fun-
chal, Madeira - Portugal, January 22-24, 2018. 336–345. https://doi.org/10.5220/
0006563503360345

[4] Thomas Buchmann, Matthias Bank, and Bernhard Westfechtel. 2022. BXtendDSL:
A layered framework for bidirectional model transformations combining a declar-
ative and an imperative language. J. Syst. Softw. 189 (2022), 111288. https:
//doi.org/10.1016/j.jss.2022.111288

[5] Thomas Buchmann, Matthias Bank, and Bernhard Westfechtel. 2023. BXtendDSL
at Work: Combining Declarative and Imperative Programming of Bidirectional
Model Transformations. SN Comput. Sci. 4, 1 (2023), 50. https://doi.org/10.1007/
s42979-022-01448-8

[6] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF
Eclipse Modeling Framework (2nd ed.). Addison-Wesley, Boston, MA.

4

https://github.com/tbuchmann/Incremental-class2relational
https://github.com/tbuchmann/Incremental-class2relational
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.5220/0010188200150027
https://doi.org/10.5220/0010188200150027
https://doi.org/10.5220/0006563503360345
https://doi.org/10.5220/0006563503360345
https://doi.org/10.1016/j.jss.2022.111288
https://doi.org/10.1016/j.jss.2022.111288
https://doi.org/10.1007/s42979-022-01448-8
https://doi.org/10.1007/s42979-022-01448-8

	Abstract
	1 Introduction
	2 BXtendDSL
	3 Solution
	3.1 Declarative Layer
	3.2 Imperative Layer

	4 Evaluation
	5 Conclusion
	References

