
An NMF Solutions to the TTC2023 Containers to MiniYAML Case
Georg Hinkel

georg.hinkel@hs-rm.de

RheinMain University of Applied Sciences

Wiesbaden, Germany

ABSTRACT
This paper presents a solution to the Containers to MiniYAML

Case at the TTC 2023 using the .NET Modeling Framework (NMF),

especially NMF Synchronizations. This solution is able to derive an

incremental change propagation entirely in an implicit manner.

CCS CONCEPTS
• Software and its engineering → Object oriented frame-
works; Specialized application languages; API languages.

KEYWORDS
incremental, model-driven, transformation

1 INTRODUCTION
To denote the infrastructure of distributed systems, models are often

used to capture deployment information at a high level. Often, very

generic languages are used as they offer a great flexibility. However,

to process the information contained in these models, often type-

safe representations need to be extracted and may be individually

maintained. If this is the case, a synchronization between both

representations is necessary in order to keep both artifacts up to

date. The TTC 2023 Containers toMiniYAML case poses an example

where deployment information is stored in very generic YAML files

that need to be synchronized as the deployment information may

contain details not present in the conceptual model while the latter

may contain information such as layouts for graphical editors that

are not present in the original YAML file.

This case is particular interesting for NMF as it applies model

synchronization to models of different levels of abstraction. While

previous cases denoted a synchronization of models that contained

essentially the same information in different ways, this case denotes

a synchronization between a very specific model like the containers

model and a very generic metamodel for YAML.

In this paper, I demonstrate a solution to this case using NMF

Synchronizations. NMF Synchronizations makes it possible to use a

simple and concise specification of consistencies to gain an efficient,

bidirectional transformation with support for incremental updates

on both ends.

The remainder of this paper is structured as follows: Section 2

gives a brief overview how NMF Expressions and NMF Synchro-

nizations work. Section 3 explains the actual solution. Section 4

discusses results from the benchmark framework before Section 5

concludes the paper.

2 NMF EXPRESSIONS AND NMF
SYNCHRONIZATIONS

NMF Expressions [5] is an incrementalization system integrated

into the C# language. That is, it takes expressions of functions and

automatically and implicitly derives an incremental change propa-

gation algorithm. This works by setting up a dynamic dependency

graph that keeps track of the models state and adapt when nec-

essary. The incrementalization system is extensible and supports

large parts of the Standard Query Operators (SQO
1
).

NMF Synchronizations is a model synchronization approach

based on the algebraic theory of synchronization blocks. Synchro-

nization blocks are a formal tool to run model transformations

in an incremental (and bidirectional) way [3]. They combine a

slightly modified notion of lenses [1] with incrementalization sys-

tems. Model properties and methods are considered morphisms

between objects of a category that are set-theoretic products of a

type (a set of instances) and a global state space Ω.
A (well-behaved) in-model lens 𝑙 : 𝐴 ↩→ 𝐵 between types 𝐴 and

𝐵 consists of a side-effect free Get morphism 𝑙 ↗∈ 𝑀𝑜𝑟 (𝐴, 𝐵) (that
does not change the global state) and a morphism 𝑙 ↘∈ 𝑀𝑜𝑟 (𝐴 ×
𝐵,𝐴) called the Put function that satisfy the following conditions

for all 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 and 𝜔 ∈ Ω:

𝑙 ↘ (𝑎, 𝑙 ↗ (𝑎)) = (𝑎,𝜔)
𝑙 ↗ (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = (𝑏, 𝜔̃) for some 𝜔̃ ∈ Ω.

The first condition is a direct translation of the original PutGet

law. Meanwhile, the second line is a bit weaker than the original

GetPut because the global state may have changed. In particular,

we allow the Put function to change the global state.

A (single-valued) synchronization block 𝑺 is an octuple (𝐴, 𝐵,𝐶,
𝐷,Φ𝐴−𝐶 ,Φ𝐵−𝐷 , 𝑓 , 𝑔) that declares a synchronization action given

a pair (𝑎, 𝑐) ∈ Φ𝐴−𝐶 : 𝐴 � 𝐶 of corresponding elements in a base

isomorphism Φ𝐴−𝐶 . For each such a tuple in states (𝜔𝐿, 𝜔𝑅), the
synchronization block specifies that the elements (𝑓 (𝑎,𝜔𝐿), 𝑔 ↗
(𝑏, 𝜔𝑅)) ∈ 𝐵 × 𝐷 gained by the lenses 𝑓 and 𝑔 are isomorphic with

regard to Φ𝐵−𝐷 .

𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

Figure 1: Schematic overview of unidirectional synchroniza-
tion blocks

A schematic overview of a synchronization block is depicted in

Figure 1. The usage of lenses allows these declarations to be en-

forced automatically and in both directions, if required. The engine

computes the value that the right selector should have and enforces

it using the Put operation. Similarly, a multi-valued synchroniza-

tion block is a synchronization block where the lenses 𝑓 and 𝑔 are

1
http://msdn.microsoft.com/en-us/library/bb394939.aspx; SQO is a set of language-

independent standard APIs for queries, specifically defined for the .NET platform.

http://msdn.microsoft.com/en-us/library/bb394939.aspx


Georg Hinkel

typed with collections of 𝐵 and 𝐷 , for example 𝑓 : 𝐴 ↩→ 𝐵∗ and
𝑔 : 𝐶 ↩→ 𝐷∗ where stars denote Kleene closures.

Synchronization blocks have been implemented in NMF Synchro-

nizations, an internal DSL hosted by C# [2, 3]. For the incremen-

talization, it uses the extensible incrementalization system NMF

Expressions. This DSL is able to lift the specification of a model

transformation/synchronization in three orthogonal dimensions:

• Direction: A client may choose between transformation

from left to right, right to left or in check-only mode

• ChangePropagation:A clientmay choosewhether changes

to the input model should be propagated to the output

model, also vice versa or not at all

• Synchronization:A client may execute the transformation

in synchronization mode between a left and a right model.

In that case, the engine finds differences between themodels

and handles them according to the given strategy (only add

missing elements to either side, also delete superfluous

elements on the other or full duplex synchronization)

This flexibility makes it possible to reuse the specification of a

transformation in a broad range of different use cases. Furthermore,

the fact that NMF Synchronizations is an internal language means

that a wide range of advantages from mainstream languages, most

notably modularity and tool support, can be inherited [4].

Based on this formal notion of synchronization blocks and in-

model lenses, one can prove that model synchronizations built with

well-behaved in-model lenses are correct and hippocratic [3]. That

is, updates of either model can be propagated to the other model

such that the consistency relationships are restored and an update

to an already consistent model does not perform any changes.

3 SOLUTION
The solution consists of three synchronization rules adapted from

the Epsilon solution and a couple of synchronization blocks, syn-

chronizing details of the models. These synchronization rules are

the MainMap rule as the start rule, the Container2MapEntry that

synchronizes containers and the Volume2MapEntry rule to synchro-
nize volumes.

The MainMap rule consists of three rather simple synchronization

blocks depicted in Listing 1.

1 SynchronizeLeftToRightOnly(_ => "2.4", m => m.Scalar <string >("
version"));

2

3 SynchronizeMany(SyncRule <Container2MapEntry >(),
4 c => c.Nodes.OfType <INode , IContainer >(),
5 m => m.ForceEntries("services"));
6 SynchronizeMany(SyncRule <Volume2MapEntry >(),
7 c => c.Nodes.OfType <INode , IVolume >(),
8 m => m.ForceEntries("volumes"));

Listing 1: The MainMap rule

The first one simply sets the version scalar attribute to 2.4.

The second and third synchronization blocks denote synchroniza-

tion blocks to synchronize the containers and the volumes. The

Container metaclass only has a very generic nodes reference,

therefore we need to work with a type filter. On the YAML side, we

are working with a helper method to find the map entry with name

services (or volumes, respectively), make sure it exists, make sure

its value is a map and return the entries of that map. Because this

is done outside of NMF Synchronizations, it has the downside that

this is not being change-tracked. That is, if a client was to change

the name of the map entry, NMF Synchronizations would not see

that the elements would no longer be services/volumes.

The second rule andmaybe themost interesting one is Containers2MapEntry.
This rule controls the synchronization of a container with a map

entry in the YAML model. It consists of five synchronization blocks

as depicted in Listing 2.

1 Synchronize(c => c.Name , me => me.Key);
2

3 Synchronize(c => c.Image.Image_ , me => me.Scalar <string >("image"))
;

4 Synchronize(c => c.Replicas.WithDefault (1), me => me.Scalar <int?>(
"replicas"));

5

6 SynchronizeMany(
7 c => new VolumeMountCollection(c),
8 me => new ScalarCollection(me, "volumes"));
9 SynchronizeMany(
10 c => new DependsOnNameCollection(c),
11 me => new ScalarCollection(me, "depends_on"));

Listing 2: The synchronization blocks of
Containers2MapEntry

The first synchronization block just denotes that the names of

the container and the map entry generated for it should be synchro-

nized. The next two synchronization blocks utilize a helper function

to read and write entries of the map entries map as a given type

and denote that this value should be synchronized with values from

the container. This applies to the image of the container and the

replicas. For the replicas, we want to treat no definition of replicas

as 1, for which we created another helper function WithDefaults.
This helper function essentially changes the default value for a

given type and is sufficiently generic that we will take it over into

the source code of NMF.

In order to run the synchronization block bidirectionally, these

helper functions need to be specified as in-model lenses. For this,

NMF uses dedicated annotations as depicted in Listing 3.

1 [LensPut(typeof(YamlHelpers), nameof(SetScalar))]
2 public static T? Scalar <T>(this IMapEntry? entry , string key)
3 { ... }
4

5 public static void SetScalar <T>(this IMapEntry? entry , string key ,
T? value)

6 { ... }

Listing 3: Signature of the Scalar helper method and Lens
put

The definition of Listing 3 is what NMF calls a persistent lens [3].

This denotes that the put function entirely propagates the value.

An alternative is a non-persistent lens, which in this case would

have to return a value of type T? that NMF would then propagate

to the next lens.

Lenses are used as black boxes in the synchronization. That is,

even though the implementation of the Scalar method depicted in

Listing 3 of course casts the value of the map entry to a map and

then looks for the map entry with the given name, casting its value

to a scalar, these accesses are not recorded and the transformation

will therefore not react on changes in this chain. For instance, if

one accidentally or not renames the image element, NMF Synchro-

nization does not reset the image of the container because it does

not notice that the scalar element is no longer the correct one. This

can be changed through dedicated annotations, but this is not done,



An NMF Solutions to the TTC2023 Containers to MiniYAML Case

hence changes such as renaming key elements in the YAML is not

supported.

The third pair of synchronization blocks denote the synchroniza-

tion of collections. Here, we use three helper classes that denote

virtual collections. That is, we wrap a collection of elements with

custom methods for changing collection contents. As an example

for these collections, the custom collection for volume mounts is

depicted in Listing 4.

1 private class VolumeMountCollection : CustomCollection <string > {
2 private readonly IContainer _container;
3

4 public VolumeMountCollection(IContainer container)
5 : base(container.VolumeMounts.Select(vm => \$"{vm.Volume.Name

}:{vm.Path}"))
6 { _container = container; }
7

8 public override void Add(string item)
9 { ... }
10

11 public override void Clear()
12 { ... }
13

14 public override bool Remove(string item)
15 { ... }
16 }

Listing 4: Sketch of the custom collection for the volume
mounts of a container

Custom collections are initialized with an expression that NMF

is able to incrementalize but unable to infer generic operations to

add elements. In the case of the collection of volume mounts, this

is a select call from the volume mounts to format them into strings.

However, the reverse of such operations is usually not clear, in

this case it is not obvious how to convert the string representation

of a volume mount back to the model. Rather, this logic is very

application specific, in this case that we know that the colon is

always the separator between the volume name (which must not

contain colons) and the path. Therefore, NMF requires the developer

to explicitly specify what should happen in these cases, but at least

the developer does not have to care where these changes come

from.

The third synchronization rule to synchronize volumes to map

entries only contains a synchronization rule to synchronize the

names of the volume and the corresponding map entry.

4 EVALUATION
The integration of the presented solution into the benchmark frame-

work is still pending. Unfortunately, this integration is rather diffi-

cult due to the instability of Eclipse, which sometimes just fails to

resolve the basic types of the benchmark framework. Traditionally,

the time measurements of the benchmark framework is entirely

odd as the actual propagation of changes only takes a fraction of

the actual runtime, which is mainly used for recording the changes,

serializing them, deserializing them in NMF, serializing the result

model in NMF and deserializing it in the benchmark framework.

In the FamiliesToPersons case from 2017, this serialization effort

took more than 90% of the runtime while the actual propagation

was very fast. I do not see a reason why the actual change prop-

agation time should be higher in this case, but did not perform

measurements so far.

I see the major advantage of this solution that it does combine

both directions into a single transformation, even though it may

make the synchronization a bit more difficult to write sometimes.

Essentially, NMF Synchronization breaks up the bidirectionality of

the transformation into smaller pieces. Instead of multiple largely

independent transformations of entire models that need to fit to-

gether, NMF forces developers to work implement bidirectionality

in smaller chunks, mostly in-model lenses or their collection-valued

equivalents, custom collections. Because the transformation crosses

abstraction boundaries, we often needed to implement our own in-

model lenses, particularly on the rather generic metamodel, which

here is the YAML metamodel. These in-model lenses are a lot easier

to review and test and the formal foundation of synchronization

blocks gives a clear notion of what properties these pairs of func-

tions need to fulfill. Ideally, these notions could be proved by theo-

rem provers, but this has not been done, yet and may be subject of

future work.

There is one shortcoming in this transformation, which is also

the reason that several tests fail. It is the handling of null val-

ues. If the property of a model element is not set, NMF assigns

a null reference and the standard behaviour in .NET is to throw

a NullReferenceException when trying to access a property of

a null reference (whereas this returns OclUndefined in OCL). In

the incremental execution of NMF, this changed behaviour would

be quite easy to implement, but in case no change propagation

is required, NMF compiles the code expressions to normal .NET

bytecode. However, even though in particular the C# programming

languages does have a null-coalescing operator ?., this is unfor-
tunately not exposed in the expression sub-language that NMF

Synchronizations is using heavily. Also, the put operation in these

cases is not clear, because a single in-model lens usually cannot

generically know when a model element created on the fly can be

removed as there might be other lenses requiring it.

As a workaround, the transformation needs to customize the

creation of containers in order to ensure that a container always has

the image reference set to an element, in order to avoid a possible

NullReferenceException when accessing the image of the newly

created container, depicted in Listing 5.

1 protected override IContainer CreateLeftOutput(IMapEntry input ,
IEnumerable <IContainer > candidates , ISynchronizationContext
context , out bool existing)

2 {
3 existing = false;
4 return new Container { Image = new Image() };
5 }

Listing 5: Overriding the creation of containers

In this listing, we make use of the fact that the transformation is

always running as an online transformation, meaning that changes

to the either model are always performed immediately (no idle

updates). Idle updates in this solution mean that the models are just

not propagated from NMF to the Eclipse tests.

Another problem with respect to the benchmark framework is

that NMF generally does not have support for ordering elements,

yet. That is, while synchronization blocks are processed in the order

in which they occur, the collection-valued lens implementations

generally ignore the order of elements, yet. This is not a limitation

of the theory but rather only a limitation of the implementation

that currently does not support order. The change interface that

NMF is using in fact does report indices where elements have been



Georg Hinkel

inserted or removed but there is no functionality in place to ensure

that orderings are kept across lenses as they are sometimes hard

to implement. As an example, it is quite hard to get the index of

an added element in a filtered collection, given the index of the

element in the source collection, compared at least to propagating

the change in constant time when order is not required. Therefore,

all tests that require an exact order are going to fail.

It is generally quite hard to work with the benchmark framework

as the target platform for Eclipse seems rather unstable and Eclipse

often fails to run the unit tests until one restarts the system.

5 CONCLUSION
The NMF solution shows how the Containers to YAML transfor-

mation from the case study can be implemented in a bidirectional

fashion by decomposing it into multiple isomorphisms with syn-

chronization blocks. The advantage of this decomposition is that it

allows developers to break down the bidirectionality into smaller

pieces that are easier to implement and review while ensuring cor-

rectness of the resulting transformation through theoretical proofs.

However, the solution also shows that the support of NMF when

synchronizing models at different abstraction levels is complicated

and requires a lot of helper functions. To provide a better support

in such cases and to support order of elements will be subject of

future research.

REFERENCES
[1] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,

and Alan Schmitt. 2007. Combinators for Bidirectional Tree Transformations:

A Linguistic Approach to the View-update Problem. ACM Transactions on
Programming Languages and Systems (TOPLAS) 29, 3, Article 17 (May 2007).

https://doi.org/10.1145/1232420.1232424

[2] Georg Hinkel. 2015. Change Propagation in an Internal Model Transformation

Language. In Theory and Practice of Model Transformations: 8th International
Conference, ICMT 2015, Held as Part of STAF 2015, L’Aquila, Italy, July 20-21, 2015.
Proceedings, Dimitris Kolovos and Manuel Wimmer (Eds.). Springer International

Publishing, Cham, 3–17. https://doi.org/10.1007/978-3-319-21155-8_1

[3] Georg Hinkel and Erik Burger. 2019. Change propagation and bidirectionality in

internal transformation DSLs. Softw. Syst. Model. 18, 1 (2019), 249–278. https:

//doi.org/10.1007/s10270-017-0617-6

[4] Georg Hinkel, Thomas Goldschmidt, Erik Burger, and Ralf Reussner. 2017. Using

Internal Domain-Specific Languages to Inherit Tool Support and Modularity

for Model Transformations. Software & Systems Modeling (2017), 1–27. https:

//doi.org/10.1007/s10270-017-0578-9

[5] Georg Hinkel, Robert Heinrich, and Ralf Reussner. 2019. An extensible approach

to implicit incremental model analyses. Software & Systems Modeling (29 Jan

2019). https://doi.org/10.1007/s10270-019-00719-y

https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1007/978-3-319-21155-8_1
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-019-00719-y

	Abstract
	1 Introduction
	2 NMF Expressions and NMF Synchronizations
	3 Solution
	4 Evaluation
	5 Conclusion
	References

