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ABSTRACT
Program abstraction is a key step in the extraction of informa-
tion from executable code, in order to understand legacy code,
produce documentation in the form of models, or to perform re-
engineering to an alternative program platform/language. Several
special-purpose model transformation languages have been devel-
oped to perform program abstraction, however it remains an open
research question what kinds of transformation facilities and tech-
niques are most appropriate for the problem. In this case, we de�ne
a task for abstracting a subset of VB6/VBA to UML and OCL, this
task can be used to perform comparative evaluation of di�erent
transformation approaches for the abstraction problem.
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Program abstraction;Model-driven engineering; Reverse-engineering;
Re-engineering
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1 INTRODUCTION
Program abstraction is the process of extracting formalised infor-
mation from executable program code. The input could be either
source code [15] or object code [17], and the outputs can include
data �ow or control �ow information. The purpose could be for
program comprehension [5] or for refactoring or other quality im-
provement of the source [4]. Here we will focus on the task of
abstracting software models from source code, for the purpose of
re-engineering, in particular for translating the source code to a
di�erent programming language [10].

An important property in this situation is semantic preserva-
tion: the abstraction should accurately capture the semantics of the
source code, in order that the organisation which owns the code
can have con�dence that the re-engineered version still performs
the same functionality as the original. Thus the abstraction needs
to be expressed in a language which supports detailed speci�cation
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of behaviour. Here we propose the use of OCL [1, 13] together with
UML class speci�cations, however other appropriate formalisms,
such as activity diagrams or state machines, could also be used.

Program abstraction involves the co-use of parsing/grammar-
based technologies with model-based technologies such as transfor-
mations. This is a similar situation to the combined use of grammar-
based and model-based techniques for DSL tooling [2].

The speci�c re-engineering task is translation from Visual Basic
version 6 (VB6) to Python version 3.9. To make the task practical,
only a small subset of VB6 will be considered here, essentially
modules with a top-level linear sequence of variable declarations
and assignments.

The research questions we wish to investigate are:
RQ1 What form of transformation language and transforma-

tion language facilities are particularly e�ective for pro-
gram abstraction?

RQ2 What are the speci�c challenges of de�ning program
abstraction transformations?

RQ3 Are there any transformation design patterns or idioms
which are particularly relevant for this domain?

RQ4 How should parsing and grammar-based technologies be
integrated with transformations for program abstraction?

The case materials are available at: zenodo.org/record/7801436.

2 VISUAL BASIC
BASIC1 was intended, as its name suggests, as a language for inex-
perienced programmers to use for relatively simple programming
problems. It became popular with the advent of home PCs in the
1970s, and as Visual Basic (VB) and Visual Basic for Applications
(VBA) became the main language for de�ning auxiliary code mod-
ules within MS applications such as Excel [12]. Visual Basic 6.0
(VB6), released in 1998, was the last version of VB prior to VB .NET,
and is still supported on Windows platforms.

The principal challenges for software modernisation and re-
engineering of VB/VBA are:

• The use of implicit typing for data items
• GOTO statements
• The large number of kinds of statements (67 in VB6)
• The complexity of MS applications such as Excel, with com-

plex spreadsheet data and hundreds of application func-
tions, which can be called from VBA code.

We will restrict the considered subset of VB6 to those programs
written using variable declarations (DIM statements), assignment
statements (including LSET, RSET and REDIM) and sequencing.
We recommend the use of the ANTLR VB6 grammar, which is

1Beginner’s All Purpose Symbolic Instruction Code
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supplied with the case materials, together with an executable parser
generated from the grammar.

In terms of this grammar, the case will concern programs parsed
according to the grammar/lexical rules for module, moduleBody,
moduleBodyElement, moduleBlock, block, blockStmt, letStmt (re-
stricted to the form LHS = RHS), variableStmt, implicitCallStmt InStmt,
valueStmt, variableListStmt, variableSubStmt, subscripts, asTypeClause,
iCS S VariableOrProcedureCall, iCS S ProcedureOrArrayCall,
ambiguousIdenti�er , baseType, complexType, argsCall, argCall, type ,
subscript , IDENTIFIER, literal, doubleLiteral, integerLiteral,
STRINGLITERAL, TRUE, FALSE, rsetStmt, lsetStmt, redimStmt,
redimSubStmt, iCS B MemberProcedureCall, iCS S MemberCall. The
VB6 grammar VisualBasic6.g4 is included in the case materials
grammar directory.

Figure 1 shows the metamodel of the considered subset of VB6.
This is available as an EMF metamodel in the case materials. LSET
and RSET statements are combined with LET statements in this
metamodel.

Figure 1: VB6 subset metamodel

For example, the statement

X(2) = Y

would be expressed in terms of this metamodel as an instance

s : letStmt

where

s.operator = “ = ”
s.assigns = lhs
s.value = rhs
lhs : iCS S VariableOrProcedureCall
lhs.identi�er = “X”
lit2 : literal
lit2 : lhs.args
lit2.text = “2”
rhs : iCS S VariableOrProcedureCall
rhs.identi�er = “Y”

3 CASE SPECIFICATION
The intended mapping from the VB6 subset to UML/OCL is as
follows. The mapping of types is shown in Table 1.

VB6 type t UML/OCL translation t ′

Boolean, Integer , Long Boolean, Integer , Integer
String String
Float, Double Real
Array type t () Sequence(t ′)
Collection Sequence(Map(String,OclAny))

Table 1: Mapping of VB6 types to OCL types

The VB6 data types Boolean, Integer (16-bit integers), Long (32-
bit integers) and String translate directly to OCL types. However
the VB6 Double is a semantically distinct subset (IEEE 754 64-bit
�oating point range) of OCL Real. A speci�c computational type
double with the necessary properties could be used to abstract VB6
Double. The VB6 Collection type is conceptually an ordered map
type, whereby elements can be accessed by index as well as by key.
One way to model this is as the OCL type

Sequence(Map(String,OclAny))
For each basic VB6 type t, there is a default OCL value defaultt for
the type: 0 for integer types, 0.0 for �oating-point types, false for
booleans, and the empty string “” for strings.

The mapping of expressions is shown in Tables 2 and 3.
Table 4 describes the mapping of VB6 statements to procedural

OCL. Note that when elements are added to a collection using an
explicit key, then the key must not already be used in the collection
keyset [12].

4 SOLUTION CRITERIA
The case tasks are:

Abstraction: Implement the speci�ed mapping from the VB6
subset to UML/OCL, using your chosen parsing technology
and transformation language/languages.

Validation: Check that the test cases are correctly abstracted,
by inspection or by execution of the abstracted speci�ca-
tion.

Translation (optional): translate the abstracted UML/OCL
into Python 3.9 and test that the result satis�es the expected
semantics. An existing MDE toolset or code generator can
be used for this part.

2
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VB6 source expression e UML/OCL translation e′

Numeric literal v v
String literal "s" "s"
True, False true, false
Nothing null
Identi�er Id Id
Array access e(v) e′→at (v′)
Bracketed expression (e) (e′)
Floor(x) (x ′) .�oor ()
Max(s) Set{s′}→max ()
Min(s) Set{s′}→min()
Pow(x,y) (x ′) .pow(y′)
Len(s) (s′)→size()
Mid(s,i,j) (s′).substring(i′, i′ + j′ − 1)
Unary expressions +e, −e e′, −e′
NOT(e) not (e′)
Binary expressions e1 + e2, e1 − e2, e1′ + e2′, e1′ − e2′,
e1 ∗ e2, e1/e2, e1′ ∗ e2′, e1′/e2′,
e1\e2, e1a e2, e1′ div e2′, (e1′) .pow(e2′),
e1 < e2, e1 <= e2, e1′ < e2′, e1′ <= e2′,
e1 <> e2, e1 = e2, e1′ /= e2′, e1′ = e2′,
e1 > e2, e1 >= e2, e1′ > e2′, e1′ >= e2′,
e1 & e2 String e1 e1 + e2
e1 & e2 integer e1 MathLib.bitwiseAnd (e1′, e2′)
e1 MOD e2 e1′ mod e2′
e1 AND e2, e1 OR e2 e1′ and e2′, e1′ or e2′
e1 XOR e2 e1′ xor e2′
e1 IMP e2, e1 EQV e2 e1′ implies e2′, (e1′ = e2′)
e1 LIKE e2 (e1′)→isMatch(e2′)
Table 2: Mapping of VB6 expressions to OCL expressions

VB6 expression e UML/OCL translation e′

NEW Collection Sequence{}
id .Item(v) id→select (m |
id (v) m→keys()→includes(v′))→any()→at (v′)
id . Count id→size()
id . Items id→collect (m | m→values()→any())
id . Keys id→collect (m | m→keys()→any())
id . RemoveAll Sequence{}

Table 3: Mapping of VB6 collection expressions to OCL ex-
pressions

The speci�c criteria to be evaluated are:
Coverage and completeness: the abstraction transformation

should be able to process the given 10 example programs.
This includes the abstraction of the VB6 typesDouble, Integer ,
Long, Boolean, String, Collection to appropriate UML/OCL
types.

Correctness: the abstracted speci�cations should be correct
wrt the mapping of Tables 1, 2, 3, 4.

E�ciency: the abstraction process should be of practical e�-
ciency (ie., execution time less than 1 minute for examples
of 500 LOC, and a linear time complexity).

VB6 statement s UML/OCL translation s′

DIM id AS t var id : t ′ := defaultt
DIM id var id : OclAny := null
DIM id () AS t var id : Sequence(t ′) := Sequence{defaultt }
DIM id () var id : Sequence(OclAny) := Sequence{null}
id = e id := e′

e(v) = value e′ := e′.setAt (v′, value′)
id . Add v id := id→including(Map{null ↦→ v′})
id . Add Key := k, id := id→including(Map{k′ ↦→ v′})
Item := v

id . Remove v id := id→excludingAt (v′)
when v integer

id . Remove v id := id→select (m |
m→keys()→excludes(v′))

when v string
LSET id = e id := StringLib.leftAlignInto(e′, id .size)
REDIM id (val) id := Sequence{1..(val′)}→collect (id→any())
RSET id = e2 id := StringLib.rightAlignInto(e′, id .size)
Table 4: Mapping of VB6 statements to OCL statements

10 small VB6 examples are provided in the examples directory,
both in source code form and as parse trees generated by the ANTLR
VB6 parser. Your solution should correctly abstract these examples
and optionally translate them to correct Python code. Compute the
percentage of cases which are correctly abstracted/translated.

Test cases for each program are speci�ed in the directory tests.
There are 21 test cases in total. Compute the overall percentage
of test cases which have the same result as the source in (1) their
UML/OCL representation; (2, optional) the Python target code.

Five larger examples for testing performance are given in the
performance directory. Compute the execution time of your ap-
proach on these examples, as an average of three executions. Also
provide a speci�cation of your execution environment.

Desirable characteristics of solutions are (1) clear and modular
expression of abstraction rules, for example, that the abstraction
of each source language construct is de�ned by a speci�c transfor-
mation rule for that construct; (2) e�cient processing of program
source data and generation of target text; (3) preservation of source
code structure in the abstraction and target, in order to enhance
traceability; (4) adaptable and extensible transformations, which
could be extended to process larger subsets of VB using the same
transformation approach.

4.1 Scores for solutions
Solutions will be evaluated according to these measures:

(1) Corr1: The percentage of the 10 example programs which
are correctly abstracted to UML/OCL (also optionally: the
percentage correctly translated to Python)

(2) Corr2: The percentage of the 21 tests which have the same
result in the source and abstraction (also optionally: in the
source and the translation to Python)

(3) Perf : Percentage of performance examples for which your
approach has the same or better performance than the ref-
erence solution, on similar hardware.

3
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5 JOURNAL PUBLICATION
Case solutions which meet a threshold standard of capabilities and
scores will be selected for incorporation into a JOT article. JOT
is an appropriate venue as it is concerned with the application of
MDE technologies in practical software development contexts. Re-
engineering of legacy systems into modernised and object-oriented
platforms/languages is of high concern to businesses that utilise
software [7].

6 REFERENCE SOLUTION
A solution to the abstraction part of the case is provided in the
solution directory, using the CGTL/CSTL text-to-text transforma-
tion language [9, 11]. The VB2UML.cstl script, together with vb-
Declarations.cstl and vbFunctions.cstl, de�nes abstraction rules for
each grammar clause of the VB6 grammar. This covers almost the
entire VisualBasic6.g4 grammar de�nition.

For example, the VB6 grammar de�nition for the valueStmt non-
terminal includes the productions:

valueStmt:
...
| valueStmt WS? AMPERSAND WS? valueStmt
| valueStmt WS? (EQ | NEQ |

LT | GT | LEQ |
GEQ | LIKE | IS) WS? valueStmt

Thus the corresponding abstraction ruleset valueStmt:: has rules
for each of the 9 binary operators of these cases:

valueStmt::
...
_1 & _2 |-->(_1 + _2)
_1 = _2 |-->_1 = _2
_1 <> _2 |-->_1 /= _2
_1 < _2 |-->_1 < _2
_1 > _2 |-->_1 > _2
_1 <= _2 |-->_1 <= _2
_1 >= _2 |-->_1 >= _2
_1 LIKE _2 |-->(_1)->isMatch(_2)
_1 IS _2 |-->_1 <>= _2

Likewise for other forms of expression and statement. ACGTL/CSTL
rule

LHS |-->RHS

of ruleset tg:: matches against AST terms with tag tg which corre-
spond element-by-element to the LHS tokens. Eg., a term t of form
(valueStmt t1 & t2) will match against the LHS of the valueStmt
rule

_1 & _2 |-->(_1 + _2)

with t1 bound to 1 and t2 bound to 2.
The subterms t1 and t2 are then recursively mapped to strings

s1 and s2, and the result of the rule formed as the substitution
RHS[s1/ 1, s2/ 2], in this case this is (s1 + s2).

User-de�ned functions f can also be applied to terms by the
notation i‘f , where f is de�ned by a ruleset f ::. This enables pro-
cessing of subterms of a term bound to i, ie., source terms can be
inspected to any depth using this technique.

For forward engineering to Python, the Python code generator
of AgileUML2 is used.

Figure 2 shows the overall execution time for abstraction of the
�ve performance examples. The time is computed as the average of
3 executions, on a Windows 10 quad-core laptop (Intel i5 2.8GHz
processor). Table 5 gives the solution evaluation scores for the
reference solution.

Figure 2: Performance of reference solution

Criteria Score
Corr1 100%
Corr2 100%
Perf 100%

Table 5: Solution evaluation of reference solution

7 RELATEDWORK
Related TTC cases are (1) [5] and (2) [4]. These concern (1) the
extraction of state machines from Java code, and (2) the refactor-
ing of Java code. An earlier case at GraBaTs ‘09 also concerned
reverse engineering of Java for program comprehension [18]. This
concerned the production of control �ow and program dependence
graphs.

The present case di�ers from these previous cases by (i) focussing
on the �ne-grained semantic modelling of program variables and
data types, and (ii) by addressing a legacy source language (VB6)
instead of Java. It also concerns program translation rather than
comprehension or refactoring.

Specialised transformation approaches and languages have been
utilised for program abstraction and re-engineering tasks: the TGraph
concept and GReQL/GReTL languages are used for software migra-
tion in [3], and Gra2MoL for extracting models from code in [6].
These approaches have in common the need to e�ectively search
and extract information from large graph or tree-structured pro-
gram representations, which is a key task also in the present case.
The present case however extends the scope of the abstraction
task by requiring that a detailed semantic (mathematical) model
2github.com/eclipse/agileuml
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is produced by abstraction, rather than speci�c search results or a
syntactic (structural) model.
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