
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Program abstraction by transformation: Abstraction of Visual
Basic to UML

K. Lano
kevin.lano@kcl.ac.uk
King’s College London

London, UK

S. Kolahdouz-Rahimi
shekoufeh.rahimi@roehampton.ac.uk

University of Roehampton
London, UK

ABSTRACT
Program abstraction is a key step in the extraction of informa-
tion from executable code, in order to understand legacy code,
produce documentation in the form of models, or to perform re-
engineering to an alternative program platform/language. Several
special-purpose model transformation languages have been devel-
oped to perform program abstraction, however it remains an open
research question what kinds of transformation facilities and tech-
niques are most appropriate for the problem. In this case, we de�ne
a task for abstracting a subset of VB6/VBA to UML and OCL, this
task can be used to perform comparative evaluation of di�erent
transformation approaches for the abstraction problem.

KEYWORDS
Program abstraction;Model-driven engineering; Reverse-engineering;
Re-engineering

ACM Reference Format:
K. Lano and S. Kolahdouz-Rahimi. 2023. Program abstraction by transfor-
mation: Abstraction of Visual Basic to UML. In Proceedings of The 15th
Transformation Tool Contest (TTC 2023). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Program abstraction is the process of extracting formalised infor-
mation from executable program code. The input could be either
source code [15] or object code [17], and the outputs can include
data �ow or control �ow information. The purpose could be for
program comprehension [5] or for refactoring or other quality im-
provement of the source [4]. Here we will focus on the task of
abstracting software models from source code, for the purpose of
re-engineering, in particular for translating the source code to a
di�erent programming language [10].

An important property in this situation is semantic preserva-
tion: the abstraction should accurately capture the semantics of the
source code, in order that the organisation which owns the code
can have con�dence that the re-engineered version still performs
the same functionality as the original. Thus the abstraction needs
to be expressed in a language which supports detailed speci�cation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
TTC 2023, 20th July 2023, Leicester, UK
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of behaviour. Here we propose the use of OCL [1, 13] together with
UML class speci�cations, however other appropriate formalisms,
such as activity diagrams or state machines, could also be used.

Program abstraction involves the co-use of parsing/grammar-
based technologies with model-based technologies such as transfor-
mations. This is a similar situation to the combined use of grammar-
based and model-based techniques for DSL tooling [2].

The speci�c re-engineering task is translation from Visual Basic
version 6 (VB6) to Python version 3.9. To make the task practical,
only a small subset of VB6 will be considered here, essentially
modules with a top-level linear sequence of variable declarations
and assignments.

The research questions we wish to investigate are:
RQ1 What form of transformation language and transforma-

tion language facilities are particularly e�ective for pro-
gram abstraction?

RQ2 What are the speci�c challenges of de�ning program
abstraction transformations?

RQ3 Are there any transformation design patterns or idioms
which are particularly relevant for this domain?

RQ4 How should parsing and grammar-based technologies be
integrated with transformations for program abstraction?

The case materials are available at: zenodo.org/record/7801436.

2 VISUAL BASIC
BASIC1 was intended, as its name suggests, as a language for inex-
perienced programmers to use for relatively simple programming
problems. It became popular with the advent of home PCs in the
1970s, and as Visual Basic (VB) and Visual Basic for Applications
(VBA) became the main language for de�ning auxiliary code mod-
ules within MS applications such as Excel [12]. Visual Basic 6.0
(VB6), released in 1998, was the last version of VB prior to VB .NET,
and is still supported on Windows platforms.

The principal challenges for software modernisation and re-
engineering of VB/VBA are:

• The use of implicit typing for data items
• GOTO statements
• The large number of kinds of statements (67 in VB6)
• The complexity of MS applications such as Excel, with com-

plex spreadsheet data and hundreds of application func-
tions, which can be called from VBA code.

We will restrict the considered subset of VB6 to those programs
written using variable declarations (DIM statements), assignment
statements (including LSET, RSET and REDIM) and sequencing.
We recommend the use of the ANTLR VB6 grammar, which is

1Beginner’s All Purpose Symbolic Instruction Code

1

https://orcid.org/0000-0002-9706-1410
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

TTC 2023, 20th July 2023, Leicester, UK K. Lano and S. Kolahdouz-Rahimi

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

supplied with the case materials, together with an executable parser
generated from the grammar.

In terms of this grammar, the case will concern programs parsed
according to the grammar/lexical rules for module, moduleBody,
moduleBodyElement, moduleBlock, block, blockStmt, letStmt (re-
stricted to the form LHS = RHS), variableStmt, implicitCallStmt InStmt,
valueStmt, variableListStmt, variableSubStmt, subscripts, asTypeClause,
iCS S VariableOrProcedureCall, iCS S ProcedureOrArrayCall,
ambiguousIdenti�er , baseType, complexType, argsCall, argCall, type ,
subscript , IDENTIFIER, literal, doubleLiteral, integerLiteral,
STRINGLITERAL, TRUE, FALSE, rsetStmt, lsetStmt, redimStmt,
redimSubStmt, iCS B MemberProcedureCall, iCS S MemberCall. The
VB6 grammar VisualBasic6.g4 is included in the case materials
grammar directory.

Figure 1 shows the metamodel of the considered subset of VB6.
This is available as an EMF metamodel in the case materials. LSET
and RSET statements are combined with LET statements in this
metamodel.

Figure 1: VB6 subset metamodel

For example, the statement

X(2) = Y

would be expressed in terms of this metamodel as an instance

s : letStmt

where

s.operator = “ = ”
s.assigns = lhs
s.value = rhs
lhs : iCS S VariableOrProcedureCall
lhs.identi�er = “X”
lit2 : literal
lit2 : lhs.args
lit2.text = “2”
rhs : iCS S VariableOrProcedureCall
rhs.identi�er = “Y”

3 CASE SPECIFICATION
The intended mapping from the VB6 subset to UML/OCL is as
follows. The mapping of types is shown in Table 1.

VB6 type t UML/OCL translation t ′

Boolean, Integer , Long Boolean, Integer , Integer
String String
Float, Double Real
Array type t () Sequence(t ′)
Collection Sequence(Map(String,OclAny))

Table 1: Mapping of VB6 types to OCL types

The VB6 data types Boolean, Integer (16-bit integers), Long (32-
bit integers) and String translate directly to OCL types. However
the VB6 Double is a semantically distinct subset (IEEE 754 64-bit
�oating point range) of OCL Real. A speci�c computational type
double with the necessary properties could be used to abstract VB6
Double. The VB6 Collection type is conceptually an ordered map
type, whereby elements can be accessed by index as well as by key.
One way to model this is as the OCL type

Sequence(Map(String,OclAny))
For each basic VB6 type t, there is a default OCL value defaultt for
the type: 0 for integer types, 0.0 for �oating-point types, false for
booleans, and the empty string “” for strings.

The mapping of expressions is shown in Tables 2 and 3.
Table 4 describes the mapping of VB6 statements to procedural

OCL. Note that when elements are added to a collection using an
explicit key, then the key must not already be used in the collection
keyset [12].

4 SOLUTION CRITERIA
The case tasks are:

Abstraction: Implement the speci�ed mapping from the VB6
subset to UML/OCL, using your chosen parsing technology
and transformation language/languages.

Validation: Check that the test cases are correctly abstracted,
by inspection or by execution of the abstracted speci�ca-
tion.

Translation (optional): translate the abstracted UML/OCL
into Python 3.9 and test that the result satis�es the expected
semantics. An existing MDE toolset or code generator can
be used for this part.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Program abstraction by transformation: Abstraction of Visual Basic to UML TTC 2023, 20th July 2023, Leicester, UK

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

VB6 source expression e UML/OCL translation e′

Numeric literal v v
String literal "s" "s"
True, False true, false
Nothing null
Identi�er Id Id
Array access e(v) e′→at (v′)
Bracketed expression (e) (e′)
Floor(x) (x ′) .�oor ()
Max(s) Set{s′}→max ()
Min(s) Set{s′}→min()
Pow(x,y) (x ′) .pow(y′)
Len(s) (s′)→size()
Mid(s,i,j) (s′).substring(i′, i′ + j′ − 1)
Unary expressions +e, −e e′, −e′
NOT(e) not (e′)
Binary expressions e1 + e2, e1 − e2, e1′ + e2′, e1′ − e2′,
e1 ∗ e2, e1/e2, e1′ ∗ e2′, e1′/e2′,
e1\e2, e1a e2, e1′ div e2′, (e1′) .pow(e2′),
e1 < e2, e1 <= e2, e1′ < e2′, e1′ <= e2′,
e1 <> e2, e1 = e2, e1′ /= e2′, e1′ = e2′,
e1 > e2, e1 >= e2, e1′ > e2′, e1′ >= e2′,
e1 & e2 String e1 e1 + e2
e1 & e2 integer e1 MathLib.bitwiseAnd (e1′, e2′)
e1 MOD e2 e1′ mod e2′
e1 AND e2, e1 OR e2 e1′ and e2′, e1′ or e2′
e1 XOR e2 e1′ xor e2′
e1 IMP e2, e1 EQV e2 e1′ implies e2′, (e1′ = e2′)
e1 LIKE e2 (e1′)→isMatch(e2′)
Table 2: Mapping of VB6 expressions to OCL expressions

VB6 expression e UML/OCL translation e′

NEW Collection Sequence{}
id .Item(v) id→select (m |
id (v) m→keys()→includes(v′))→any()→at (v′)
id . Count id→size()
id . Items id→collect (m | m→values()→any())
id . Keys id→collect (m | m→keys()→any())
id . RemoveAll Sequence{}

Table 3: Mapping of VB6 collection expressions to OCL ex-
pressions

The speci�c criteria to be evaluated are:
Coverage and completeness: the abstraction transformation

should be able to process the given 10 example programs.
This includes the abstraction of the VB6 typesDouble, Integer ,
Long, Boolean, String, Collection to appropriate UML/OCL
types.

Correctness: the abstracted speci�cations should be correct
wrt the mapping of Tables 1, 2, 3, 4.

E�ciency: the abstraction process should be of practical e�-
ciency (ie., execution time less than 1 minute for examples
of 500 LOC, and a linear time complexity).

VB6 statement s UML/OCL translation s′

DIM id AS t var id : t ′ := defaultt
DIM id var id : OclAny := null
DIM id () AS t var id : Sequence(t ′) := Sequence{defaultt }
DIM id () var id : Sequence(OclAny) := Sequence{null}
id = e id := e′

e(v) = value e′ := e′.setAt (v′, value′)
id . Add v id := id→including(Map{null ↦→ v′})
id . Add Key := k, id := id→including(Map{k′ ↦→ v′})
Item := v

id . Remove v id := id→excludingAt (v′)
when v integer

id . Remove v id := id→select (m |
m→keys()→excludes(v′))

when v string
LSET id = e id := StringLib.leftAlignInto(e′, id .size)
REDIM id (val) id := Sequence{1..(val′)}→collect (id→any())
RSET id = e2 id := StringLib.rightAlignInto(e′, id .size)
Table 4: Mapping of VB6 statements to OCL statements

10 small VB6 examples are provided in the examples directory,
both in source code form and as parse trees generated by the ANTLR
VB6 parser. Your solution should correctly abstract these examples
and optionally translate them to correct Python code. Compute the
percentage of cases which are correctly abstracted/translated.

Test cases for each program are speci�ed in the directory tests.
There are 21 test cases in total. Compute the overall percentage
of test cases which have the same result as the source in (1) their
UML/OCL representation; (2, optional) the Python target code.

Five larger examples for testing performance are given in the
performance directory. Compute the execution time of your ap-
proach on these examples, as an average of three executions. Also
provide a speci�cation of your execution environment.

Desirable characteristics of solutions are (1) clear and modular
expression of abstraction rules, for example, that the abstraction
of each source language construct is de�ned by a speci�c transfor-
mation rule for that construct; (2) e�cient processing of program
source data and generation of target text; (3) preservation of source
code structure in the abstraction and target, in order to enhance
traceability; (4) adaptable and extensible transformations, which
could be extended to process larger subsets of VB using the same
transformation approach.

4.1 Scores for solutions
Solutions will be evaluated according to these measures:

(1) Corr1: The percentage of the 10 example programs which
are correctly abstracted to UML/OCL (also optionally: the
percentage correctly translated to Python)

(2) Corr2: The percentage of the 21 tests which have the same
result in the source and abstraction (also optionally: in the
source and the translation to Python)

(3) Perf : Percentage of performance examples for which your
approach has the same or better performance than the ref-
erence solution, on similar hardware.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

TTC 2023, 20th July 2023, Leicester, UK K. Lano and S. Kolahdouz-Rahimi

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

5 JOURNAL PUBLICATION
Case solutions which meet a threshold standard of capabilities and
scores will be selected for incorporation into a JOT article. JOT
is an appropriate venue as it is concerned with the application of
MDE technologies in practical software development contexts. Re-
engineering of legacy systems into modernised and object-oriented
platforms/languages is of high concern to businesses that utilise
software [7].

6 REFERENCE SOLUTION
A solution to the abstraction part of the case is provided in the
solution directory, using the CGTL/CSTL text-to-text transforma-
tion language [9, 11]. The VB2UML.cstl script, together with vb-
Declarations.cstl and vbFunctions.cstl, de�nes abstraction rules for
each grammar clause of the VB6 grammar. This covers almost the
entire VisualBasic6.g4 grammar de�nition.

For example, the VB6 grammar de�nition for the valueStmt non-
terminal includes the productions:

valueStmt:
...
| valueStmt WS? AMPERSAND WS? valueStmt
| valueStmt WS? (EQ | NEQ |

LT | GT | LEQ |
GEQ | LIKE | IS) WS? valueStmt

Thus the corresponding abstraction ruleset valueStmt:: has rules
for each of the 9 binary operators of these cases:

valueStmt::
...
_1 & _2 |-->(_1 + _2)
_1 = _2 |-->_1 = _2
_1 <> _2 |-->_1 /= _2
_1 < _2 |-->_1 < _2
_1 > _2 |-->_1 > _2
_1 <= _2 |-->_1 <= _2
_1 >= _2 |-->_1 >= _2
_1 LIKE _2 |-->(_1)->isMatch(_2)
_1 IS _2 |-->_1 <>= _2

Likewise for other forms of expression and statement. ACGTL/CSTL
rule

LHS |-->RHS

of ruleset tg:: matches against AST terms with tag tg which corre-
spond element-by-element to the LHS tokens. Eg., a term t of form
(valueStmt t1 & t2) will match against the LHS of the valueStmt
rule

_1 & _2 |-->(_1 + _2)

with t1 bound to 1 and t2 bound to 2.
The subterms t1 and t2 are then recursively mapped to strings

s1 and s2, and the result of the rule formed as the substitution
RHS[s1/ 1, s2/ 2], in this case this is (s1 + s2).

User-de�ned functions f can also be applied to terms by the
notation i‘f , where f is de�ned by a ruleset f ::. This enables pro-
cessing of subterms of a term bound to i, ie., source terms can be
inspected to any depth using this technique.

For forward engineering to Python, the Python code generator
of AgileUML2 is used.

Figure 2 shows the overall execution time for abstraction of the
�ve performance examples. The time is computed as the average of
3 executions, on a Windows 10 quad-core laptop (Intel i5 2.8GHz
processor). Table 5 gives the solution evaluation scores for the
reference solution.

Figure 2: Performance of reference solution

Criteria Score
Corr1 100%
Corr2 100%
Perf 100%

Table 5: Solution evaluation of reference solution

7 RELATEDWORK
Related TTC cases are (1) [5] and (2) [4]. These concern (1) the
extraction of state machines from Java code, and (2) the refactor-
ing of Java code. An earlier case at GraBaTs ‘09 also concerned
reverse engineering of Java for program comprehension [18]. This
concerned the production of control �ow and program dependence
graphs.

The present case di�ers from these previous cases by (i) focussing
on the �ne-grained semantic modelling of program variables and
data types, and (ii) by addressing a legacy source language (VB6)
instead of Java. It also concerns program translation rather than
comprehension or refactoring.

Specialised transformation approaches and languages have been
utilised for program abstraction and re-engineering tasks: the TGraph
concept and GReQL/GReTL languages are used for software migra-
tion in [3], and Gra2MoL for extracting models from code in [6].
These approaches have in common the need to e�ectively search
and extract information from large graph or tree-structured pro-
gram representations, which is a key task also in the present case.
The present case however extends the scope of the abstraction
task by requiring that a detailed semantic (mathematical) model
2github.com/eclipse/agileuml

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Program abstraction by transformation: Abstraction of Visual Basic to UML TTC 2023, 20th July 2023, Leicester, UK

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

is produced by abstraction, rather than speci�c search results or a
syntactic (structural) model.

REFERENCES
[1] Eclipse, Eclipse OCL, https://wiki.eclipse.org/OCL/OCLinEcore, 2023.
[2] M. Eysholdt, H. Behrens, Xtext: implement your language faster than the quick

and dirty way, OOPSLA 2010, pp. 307–309.
[3] A. Fuhr, T. Horn, V. Riediger, A. Winter, Model-driven software migration into

service-oriented architectures, Comput. Sci. Res. Dev., vol. 28, 2013, pp. 35–84.
[4] M. Geza Kulcsar, S. Peldszus, M. Lochau, Case Study: object-oriented refactoring

of Java programs using graph transformation, TTC 2015.
[5] T. Horn, Program Understanding: a reengineering case for the Transformation Tool

Contest, TTC 2011, EPTCS.
[6] J. Izquierdo, J. Molina, Extracting models from source code in software modernisa-

tion, SoSyM vol. 13, 2014, pp. 713–734.
[7] R. Khadka et al., How do professionals perceive legacy systems and software mod-

ernization?, ICSE 2014, ACM Press, 2014.
[8] S. Kolahdouz-Rahimi, K. Lano, et al., A comparison of quality �aws and technical

debt in model transformation speci�cations, JSS, vol. 169, 2020.

[9] K. Lano, Q. Xue, S. Kolahdouz-Rahimi, Agile speci�cation of code generators for
model-driven engineering, ICSEA 2020.

[10] K. Lano, Program translation using model-driven engineering, short paper, ICSE
2022.

[11] K. Lano, Q. Xue, Lightweight software language processing using Antlr and CGTL,
Modelsward 2023.

[12] Microsoft Com, O�ce VBA Reference, https://learn.microsoft.com/en-
us/o�ce/vba/api/overview, Oct. 2022.

[13] OMG, Object Constraint Language 2.4 Speci�cation, OMG document formal/2014-
02-03, 2014.

[14] J. Perez et al., Data reverse engineering of legacy databases to OO conceptual
schemas, ENTCS 72, no. 4, 2003, pp. 7–19.

[15] R. Perez-Castillo, I. Garcia-Rodriguez de Guzman, M. Piattini, Implementing
business process recovery patterns through QVT transformations, ICMT 2010.

[16] R. Perez-Castillo, I. Garcia-Rodriguez de Guzman, M. Piattini, Knowledge discov-
ery metamodel ISO/IEC 19506: A standard to modernize legacy systems, Computer
Standards and Interfaces, vol. 33, 2011, pp. 519–532.

[17] T. Sen, R. Mall, Extracting �nite-state representation of Java programs, SoSyM,
vol. 15 (2), 2016, pp. 497–511.

[18] J-S. Sottet, F. Jouault, Program Comprehension Case, GraBaTs 2009.

5

	Abstract
	1 Introduction
	2 Visual BASIC
	3 Case specification
	4 Solution criteria
	4.1 Scores for solutions

	5 Journal publication
	6 Reference solution
	7 Related work
	References

