
KMEHR to FHIR case solution with
UML-RSDS

Kevin Lano, King’s College London, UK

Alireza Rouhi, Azabaijan Shahid Madani University, Iran

� Analyse KMEHR to FMIR reference solution for quality flaws

� Define UML-RSDS solution which avoids some flaws

� Show this solution has effective performance

� Show how an inverse transformation can be derived from

UML-RSDS solution.

1

Reference ATL solution

� Large scale transformation: 20 matched rules, 32 lazy rules, 42

helpers. Library package is 346 LOC, main transformation

module is 973 LOC

� Quality aspects – Maximum OCL expression length (MEL)

� Excessive fan-out (EFO)

� Excessive parameter length (EPL)

� Excessive rule size (ERS)

� Magic numbers (MGN)

� Duplicated code (DC).

High MEL, ERS, EFO and EPL in a rule can hinder comprehension

and testing. MGN and DC increase maintenance effort.

2

Quality issues in ATL transformation

Rule Issues

Folder c = 133, MEL (size = 110), EFO = 8

SumEHRTransaction c = 124, MEL (size = 25), EFO = 12, MGN = 6

...WithAuthor MGN = 3

...WithCustodian MGN = 4, DC: refPrefix out-pattern is

a parameterised clone.

Patient c = 99, EFO = 6, MEL (size = 16)

PatientContact DC: cloned humanName

with Patient rule

Organization MGN = 1, DC: cloned out-patterns with

Practitioner rule

3

Quality issues in ATL transformation

Practitioner MGN = 1

Medication MEL (size = 15), cloned in Vaccine (DC)

Posology c = 160, EPL = 11, MGN = 2

...WithUnitAndTakes EPL = 6, MGN = 5

AllergyOrIntolerance c = 111, MGN = 12

...WithCode MEL (size = 17), expression cloned in

ProblemWithCode (DC)

Problem c = 108, EFO = 6, MGN = 7

Vaccine c = 118, EPL = 7, MGN = 2,

MEL (size = 15, DC)

4

Migrating from ATL to UML-RSDS

UML-RSDS expresses transformations as UML use cases +

operations.

� ATL matched rules correspond to UML-RSDS rules (use case

postconditions)

� ATL called/lazy rules correspond to UML-RSDS operations

� ATL rule inheritance translates to UML-RSDS rule

conjunction.

5

For example, ATL rules:

rule A2B {

from a : A

to b : B

(y <- a.x)

}

rule A2C extends A2B {

from a : A

to b : B (cs <- Set{c}),

c : C (z <- a.x->size())

}

6

Translate to:

A::

B->exists(b | b.$id = self.$id & b.y = self.x)

A::

B->exists(b | b.$id = self.$id &

C->exists(c | c.$id = "c_" + $id &

c.z = self.x->size() & b.cs = Set{c}))

mapsTo keyword of ATL indicates which input and output elements

are linked by same identity.

to

t : T mapsTo s (...)

for out variable t means t .$id = s.$id instead of t .$id = self .$id .

7

Improved solution in UML-RSDS

� Re-expressed in UML-RSDS using similar main rules, but with

factoring to reduce number of clones + exploit similarities

between different rules.

� MEL reduced by fine-grain expression factoring

� MGN cases removed by introducing named constants

� Classes such as FhirBoolean and FhirString made into value

types: only one instance for a given value.

8

Quality improvement

� More concise: matched rules part reduced to 45% of original

length (LOC)

� Clones & similar processing steps replaced by calls of

operations that factor out duplicated code

� Frequency of magic numbers & other flaws reduced.

Total MGN in matched rules reduced from 47 to 13.

MEL for Folder reduced from size = 110 to 6, MEL for

SumEHRTransaction from size = 25 to 12.

The 4 exact clones and 1 parameterised clone of ATL version

removed.

9

Rule ATL length UML-RSDS length

DocumentRoot 8 5

Folder 25 12

SumEHRTransaction 48 24

SumEHRTransactionWithAuthor 24 7

SumEHRTransactionWithCustodian 27 10

Patient 30 15

Address 11 7

Telecom 16 11

PatientContact 23 11

Organization 23 7

10

Practitioner 27 8

Medication 23 7

Posology 54 13

PosologyWithUnitAndTakes 35 15

AllergyOrIntolerance 45 22

AllergyOrIntoleranceWithCode 20 7

Problem 39 24

ProblemWithCode 19 7

Vaccine 44 14

Total 541 226

11

Performance

Input Execution Output model Memory

model time (ms) size (KB) use (MB)

1 31.3 77 64

10 56.3 440 457

100 194.3 4171 780

1000 3857 42560 1073

For largest model, stack size was increased to 8MB.

12

Inverse transformation

Based on inverting predicates, eg., assignment

t .g = Set{s.f }

inverts to s.f = t .g→any().

Inverse of rule

A::

PCond(a) =>

B->exists(b | b.$id = $id & SCond(b) & Succ(a,b))

is

B::

SCond(b) =>

A->exists(a | a.$id = $id & PCond(a) & Succ~(a,b))

13

Inverse transformation

Reconstructs KMEHR source information from FHIR model built

using forward transformation.

Eg., in Address rule, assignment

addrx.postalCode = Set{FhirString.newFhirString(self.zip)}

inverts to:

self.zip = addrx.postalCode.any.value

fstr .any .value is inverse function of FhirString .newFhirString(fstr).

Some functions modified so they can be inverted, eg., addressLine()

should be tab-separated concatenation of street , housenumber and

postboxnumber .

14

Inverse transformation

Inverse of →collect(x | expr(x)) is

→collect of expr∼ values.

For example:

t.given =

s.firstname->collect(fn | FhirString.newFhirString(fn))

inverts to

s.firstname = t.given->collect(gn | gn.value)

15

Inverse transformation

� Defined inverse rules for Patient rule and all related rules of

PersonType to Patient mapping

� Can recover KMEHR PersonType information from an FHIR

Patient

� We noticed some source information is not mapped to the

target, eg., text of allergy or intolerance. So complete source

information cannot be reconstructed from target.

16

Conclusions

� Described alternative solution to KMEHR to FHIR case, using

UML-RSDS

� More concise, improved quality measures compared to original

� Efficiency is satisfactory

� Can be used as basis of inverse transformation from FHIR to

KMEHR.

17

