
1 INTRODUCTION 1

The Fulib Solution to the TTC 2021 Laboratory

Workflow Case

Sebastian Copei, sco@uni-kassel.de Adrian Kunz, a.kunz@uni-kassel.de
Albert Zündorf, zuendorf@uni-kassel.de

Kassel University

1 Introduction

This paper outlines the Fulib [ZCD+19, ful] solution to the Laboratory Workflow Case of the Transformation
Tool Contest 2021 [ttc]. Our analysis of the use case showed that it provides quite a number of different model
elements that require individual treatment but the different cases are relatively simple. However, some parts of
the predefined EMF metamodels do not work very well with the Fulib modeling approach. For example, the
predefined metamodel uses index numbers to identify the tips of a liquid transfer job and these index numbers
need to be mapped to the barcodes of the samples that are transported by a tip. Similarly, samples need to be
mapped to cavities on micro-plates. Thus, we took the liberty to adapt the given metamodels by adding explicit
associations between samples and some labware elements, cf. Fig. 1. Note, these adaptions connect elements
from the source and from the target metamodel of our model to model transformation. For these adaptions, we
loaded and combined the two given Ecore metamodels of the use case into the Fulib code generator and then
did some manual modifications using Fulibs metamodeling API. Due to a misinterpretation, we also changed the
cardinality of the previous-next association for Jobs from many-to-many to one-to-one. We felt this meets the
semantics of the use case, too, and it resulted in a somewhat simpler model that can be processed easier and
faster.

Figure 1: Design

The rest of the paper outlines the implementation of the different model processing steps and we conclude
with some measurements.

2 Initialization and Loading

The initialization phase allows to load the metamodels and transformations. In our approach, Fulib generates
a very light weight implementation of our model in Java code and Fulib generates a number of dedicated Table
classes that enable efficient OCL [CG12] like queries. The actual model transformations are coded in Java against
the generated model API. Thus, the Fulib solution has no initialization phase.

Copyright held by the author(s).

In: A. Garcia-Dominguez, G. Hinkel, A. Boronat, and F. Krikava (eds.): Proceedings of the 13th Transformation Tool Contest,
on-line, 17-07-2020, published at http://arxiv.org

3 CREATING THE INITIAL JOBCOLLECTION 2

The various input models that describe a JobRequest, its Assay, and the target Samples are given as EMF/XMI
files (*/initial.xmi). We load the initial model with a generic XML parser and a DOM tree visitor, that builds
the model based on our light weight model implementation.

3 Creating the initial JobCollection

Once the JobRequest and Assay are loaded, we use an AssayToJobs visitor [Gam95] to generate the initial
JobCollection, cf. Listing 1. Using the visitor pattern allows for a nice seperation of model queries that look up
elements and of tranformation rules that do the actual operations.

The initial method of our AssayToJobs visitor first creates the target JobCollection (cf. line 6 of Listing 1).
Then it iterates through the samples, reagents, and asssay steps and calls appropriate assign rules (cf. lines 7 to
10).

The assignToTube rule checks, whether we have a TubeRunner that still has place for the new sample (cf. line
16). If not, a new TubeRunner is created (cf. line 17 to 20) and added to the JobCollection (cf. line 19). Then,
the sample’s barcode is added to the TubeRunner (cf. line 22) and in addition, we connect the sample to the
TubeRunner for simple reference (cf. line23). The rules assignToPlate and assignToTrough work quite similarly.

1 public class AssayToJobs {
2 private JobCo l l e c t i on j o b C o l l e c t i o n ;
3 private JobRequest jobRequest ;
4 public JobCo l l e c t i on i n i t i a l (JobRequest jobRequest) {
5 this . jobRequest = jobRequest ;
6 j o b C o l l e c t i o n = new JobCo l l e c t i on () ;
7 jobRequest . getSamples () . forEach (this : : assignToTube) ;
8 jobRequest . getSamples () . forEach (this : : a s s ignToPlate) ;
9 jobRequest . getAssay () . getReagents () . forEach ((this : : assignToTrough)) ;

10 jobRequest . getAssay () . ge tSteps () . forEach (this : : a s s ignJob) ;
11 return j o b C o l l e c t i o n ;
12 }
13 TubeRunner tube = null ;
14 int tubeNumber = 1 ;
15 private void assignToTube (Sample sample) {
16 i f (tube == null | | tube . getBarcodes () . s i z e () == 16) {
17 tube = new TubeRunner () ;
18 tube . setName (St r ing . format (”Tube%02d” , tubeNumber)
19 . s e t J o b C o l l e c t i o n (j o b C o l l e c t i o n) ;
20 tubeNumber++;
21 }
22 tube . withBarcodes (sample . getSampleID ()) ;
23 tube . withSamples (sample) ;
24 }
25 . . .

Listing 1: Initial JobCollection via AssayToJobs Visitor

Listing 2 shows the handling of assay ProtocolSteps. As there are different types of ProtocolSteps we use a map
of stepAssignRules that provides a special assign rule for each kind of step (cf. line 3, 6, 11 to 16). As an example,
ProtocolSteps of type DistributeSample are handled by rule assignLiquidTransferJob4Samples (cf. line 19 to 22).
Rule assignLiquidTransferJob4Samples just iterates through all samples and calls rule assignTipLiquidTransfer.
Rule assignTipLiquidTransfer ensures that a LiquidTransferJob is available (cf. line 26 to 34). Then, lines 36 to
42 create the corresponding TipLiquidTransfer and initialize the corresponding attributes. Note, line 42 connects
the TipLiquidTransfer to its sample for easy reference. The remaining stepAssignRules work similar.

1 public class AssayToJobs {
2 . . .
3 Map<Class , Consumer<ProtocolStep>> s tepAss ignRules = null ;
4 private void ass ignJob (Protoco lStep pro toco lS t ep) {

4 READING CHANGES TO JOB EXECUTIONS AND PROPAGATE 3

5 in i tS t epAss i gnRu l e s () ;
6 Consumer<ProtocolStep> r u l e = stepAss ignRules . get (pro toco lS tep . ge tC la s s ()) ;
7 r u l e . accept (pro toco lS tep) ;
8 }
9 private void i n i tS t epAss i gnRu l e s () {

10 i f (s tepAss ignRules == null) {
11 stepAss ignRules = new LinkedHashMap<>();
12 stepAss ignRules . put (Distr ibuteSample . class ,
13 this : : a s s ignLiqu idTrans ferJob4Samples) ;
14 stepAss ignRules . put (Incubate . class , this : : a s s ignIncubateJob) ;
15 stepAss ignRules . put (Wash . class , this : : assignWashJob) ;
16 stepAss ignRules . put (AddReagent . class , this : : assignAddReagentJob) ;
17 }
18 }
19 private void ass ignLiqu idTrans ferJob4Samples (Protoco lStep protoco lS tep) {
20 jobRequest . getSamples () . forEach (
21 sample −> as s i gnTipL iqu idTrans f e r (protoco lStep , sample)) ;
22 }
23 LiquidTrans ferJob l i qu idTrans f e rJob = null ;
24 private void as s i gnTipL iqu idTrans f e r (Protoco lStep protoco lStep , Sample sample) {
25 Distr ibuteSample d i s t r ibuteSample = (Distr ibuteSample) pro toco lS tep ;
26 i f (l i qu idTrans f e rJob == null | | l i qu idTrans f e rJob . getTips () . s i z e () == 8) {
27 l i qu idTrans f e rJob = new LiquidTrans ferJob () ;
28 l i qu idTrans f e rJob . setProtocolStepName (pro toco lS t ep . ge t Id ())
29 . s e t S t a t e (”Planned”)
30 . s e t J o b C o l l e c t i o n (j o b C o l l e c t i o n)
31 . s e tPrev i ous (l a s tJob) ;
32 l a s tJob = l i qu idTrans f e rJob ;
33 l i qu idTrans f e rJob . s e tSource (sample . getTube ())
34 . se tTarget (sample . ge tP la t e ()) ;
35 }
36 TipLiquidTrans fer t i p = new TipLiquidTrans fer () ;
37 t i p . setSourceCavityIndex (sample . getTube () . getSamples () . indexOf (sample))
38 . setVolume (d i s t r ibuteSample . getVolume ())
39 . setTargetCavityIndex (sample . ge tP la t e () . getSamples () . indexOf (sample))
40 . s e t S t a t u s (”Planned”)
41 . setJob (l i qu idTrans f e rJob)
42 . setSample (sample) ;
43 }
44 . . .

Listing 2: Initial JobCollection via AssayToJobs Visitor

4 Reading Changes to Job Executions and Propagate

Updating is done via our Update class, cf. Listing 3. Updates are described by text lines in predefined files.
Our update method calls method updateOne for each line (cf. line 7 and line 14 to 23). Basically, there are
two kinds of updates, updates that effect a whole Microplate and updates that effect individual Samples and
TipLiquidTransfers. Microplate related updates are handled by rule updateJob (cf. line 19 and 24 to 32).
Rule updateJob uses FulibTable code generated for model specific queries. Line 26 creates a JobCollectionTable
that has one row and one column containing the current JobCollection. Line 27 does a natural join with the
JobCollection and its attached labware, i.e. we get a table with rows for each pair of JobCollection and Labware.
Line 28 removes all rows that do not refer to a Microplate. Then, line 29 expands our table to Jobs attached
to the Microplates, i.e. we get rows for all possible triples of JobCollection, Microplate, and attached Jobs.
Line 30 filters for Jobs with the right stepName. For each resulting row, line 31 assigns the new state to the

4 READING CHANGES TO JOB EXECUTIONS AND PROPAGATE 4

corresponding Job.

Note, our JobCollectionTable query could also be expressed e.g. using the Java streams API. While using the
Java stream API is quite comparable, the Java stream API requires some more steps and some extra operations
like flatMap and probably some extra type casts. Thus, we prefer our FulibTables as we consider FulibTables
queries to be more concise.

1 public class Update {
2 private JobCo l l e c t i on j o b C o l l e c t i o n ;
3 public void update (JobCo l l e c t i on j obCo l l e c t i on , S t r ing updates) {
4 this . j o b C o l l e c t i o n = j o b C o l l e c t i o n ;
5 St r ing [] s p l i t = updates . s p l i t (”\n”) ;
6 for (S t r ing l i n e : s p l i t) {
7 updateOne (l i n e . tr im ()) ;
8 }
9 new JobCol l ec t ionTable (j o b C o l l e c t i o n)

10 . expandJobs (” job ”)
11 . f i l t e r (j −> j . g e tS ta t e () . equa l s (”Planned”))
12 . forEach (job −> removeObsoleteJob (job)) ;
13 }
14 private void updateOne (St r ing change) {
15 St r ing [] s p l i t = change . s p l i t (” ”) ;
16 St r ing stepName = s p l i t [0] ;
17 St r ing s t a t e s = s p l i t [2] ;
18 i f (s t a t e s . l ength () == 1) {
19 updateJob (s ta t e s , stepName) ;
20 } else {
21 updateSamplesAndTips (stepName , s t a t e s) ;
22 }
23 }
24 private void updateJob (St r ing s ta t e s , S t r ing stepName) {
25 St r ing jobState = s t a t e s . equa l s (”S”) ? ” Succeeded ” : ” Fa i l ed ” ;
26 new JobCol l ec t ionTable (j o b C o l l e c t i o n)
27 . expandLabware (” p l a t e ”)
28 . f i l t e r M i c r o p l a t e ()
29 . expandJobs (” job ”)
30 . f i l t e r (j −> j . getProtocolStepName () . equa l s (stepName))
31 . forEach (job −> job . s e t S t a t e (j obState)) ;
32 }
33 private void updateSamplesAndTips (S t r ing stepName , S t r ing s t a t e s) {
34 new JobCol l ec t ionTable (j o b C o l l e c t i o n)
35 . expandLabware (” p l a t e ”)
36 . f i l t e r M i c r o p l a t e () . expandSamples (” sample”)
37 . forEach (sample −> updateOneSampleAndTip (sample , s t a t e s , stepName)) ;
38 }
39 private void updateOneSampleAndTip (Sample sample , S t r ing s t a t e s , S t r ing stepName) {
40 JobRequest jobRequest = sample . getJobRequest () ;
41 int index = jobRequest . getSamples () . indexOf (sample) ;
42 char s t a t e = index >= s t a t e s . l ength () ? ’F ’ : s t a t e s . charAt (index) ;
43 i f (s t a t e == ’F ’) {
44 sample . s e t S t a t e (” Error ”) ;
45 }
46 TipLiquidTrans fer t i p = new SampleTable (sample)
47 . expandTips (” t i p ”)
48 . f i l t e r (t −> t . getJob () . getProtocolStepName () . equa l s (stepName))
49 . get (0) ;

4 READING CHANGES TO JOB EXECUTIONS AND PROPAGATE 5

50 i f (s t a t e == ’S ’) {
51 t i p . s e t S ta t u s (” Succeeded ”) ;
52 LiquidTrans ferJob job = t i p . getJob () ;
53 t i p . getJob () . s e t S t a t e (” Succeeded ”) ;
54 } else {
55 t i p . s e t S ta t u s (” Fa i l ed ”) ;
56 LiquidTrans ferJob job = t i p . getJob () ;
57 i f (job . ge tS ta t e () . equa l s (”Planned”)) {
58 job . s e t S t a t e (” Fa i l ed ”) ;
59 }
60 }
61 }
62 private void removeObsoleteJob (Job job)
63 {
64 i f (i s O b s o l e t e (job)) {
65 job . s e t J o b C o l l e c t i o n (null) ;
66 i f (job . getPrev ious () != null) {
67 job . getPrev ious () . setNext (job . getNext ()) ;
68 }
69 else {
70 job . setNext (null) ;
71 }
72 }
73 }
74 private boolean i s O b s o l e t e (Job job) {
75 i f (job instanceof LiquidTrans ferJob) {
76 LiquidTrans ferJob t ran s f e r Jo b = (LiquidTrans ferJob) job ;
77 for (TipLiquidTrans fer t i p : t r a n s f e r Job . getTips ()) {
78 i f (! t i p . getSample () . g e tS ta t e () . equa l s (” Error ”)) {
79 return fa l se ;
80 }
81 }
82 return true ;
83 } else {
84 for (Sample sample : job . ge tMicrop la te () . getSamples ()) {
85 i f (! sample . g e tS ta t e () . equa l s (” Error ”)) {
86 return fa l se ;
87 }
88 }
89 return true ;
90 }
91 }
92 }

Listing 3: Updating the Jobs

Updates with dedicated new states for each sample are handled by rule updateSamplesAndTip (cf. line 21
and 33 to 38). Rule updateSamplesAndTip uses a FulibTables query to look up all samples attached to some
Microplate attached to our JobCollection. For each sample we call rule updateOneSampleAndTip (cf. line 37
and line 39 to 61). Rule updateOneSampleAndTip first retrieves the result state for the current sample (cf. lines
40 to 42) and updates the sample on failure (cf. line 44). Then the FulibTables query of lines 46 to 49 retrieves
the tip that handles the current sample within the current stepName. Lines 50 to 59 then update the state of
the tip and its job.

Once the updates are propagated, the FulibTables query of lines 9 to 12 of Listing 3 iterates through all jobs
that are still Planned and applies rule removeOsoleteJob to them. LRule removeObsoleteJob calls isObsolete to
check, whether the job can be removed (cf. line 64 and lines 74 to 89) and and in that case it does a classical

5 CONCLUSIONS 6

removal from a doubly linked list.
To be honest, our removal of obsolete jobs iterates through all jobs and thus it is not really incremental.

This could be improved by collecting affected jobs during state changes and by investigating only affected jobs.
However, due to the low number of jobs in the example cases, we do not believe that such a caching mechanism
pulls it weight and thus we did go for conciseness.

5 Conclusions

Overall, the TTC 2021 Laboratory Workflow Case has reasonably simple queries and rules but it also has quite
a number of different cases like different kinds of Jobs and different kinds of Labware that all need special
treatment. The Fulib solution addresses these different cases using maps of rules where appropriate rules are
retrieved e.g. by the types of current objects. This allows to iterate through all tasks, very conveniently. For
queries, our solution uses FulibTables, which are quite similar to Java Streams or to OCL expressions. For the
actual transformations, we use plain Java code working directly on the Java implementation of our model(s).

Altogether, we consider our solution as easy to read and as quite concise, the whole update transformation
needs roughly 90 lines of Java code.

In TTC 2020 the Fulib solution used transformation code working directly, with EMF based models [CZ20].
That solution was very slow. This, year we use the Fulib generated model implementation. As Figure 2 shows,
the Fulib implementation uses an average of 16 megabytes of memory to handle a case while e.g. the reference
solution requires an average of 46 megabytes. We believe that this reduction of memory consumption is a result
of the more space efficient model implementation provided by Fulib.

Similarly, the Fulib solution seems to be quite fast: to run all phases of the test minimal case and of all
scale samples cases and of all scale assay cases on a laptop with Intel Core i7 CPU 3.10GHz and 16 GB RAM
we use a total time of about 2 seconds, the Reference solution uses about 5.2 seconds and the NMF solution
coming from the central GitHub repository uses about 76 seconds. To us it seems that EMF is a performance
bottleneck.

Tool total time (milliseconds) average memory (megabytes)

Reference 5227,95 46,45
NMF 76795,22 319,62
Fulib 1999,54 16,09

Figure 2: Measurements

Concerning correctness, we have difficulties to get the python script working that runs the checks and does
the analysis of the measurements. We will try to solve these issues before the actual contest.

Concerning completeness, we did not yet implement updates that generate new samples on the fly. We just
did not understand how these new samples shall be added to a running JobCollection: are you allowed to add
new samples to an existing plate? Or does each new sample need a new plate? Or can you add samples to plates
as long as those plates are not yet under processing? But when does the processing of a plate actually start?
We are happy to clarify these issues and to complete our solution accordingly.

You find our solution on:
Github: https://github.com/sekassel/ttc2021fuliblabworkflow

References

[CG12] Jordi Cabot and Martin Gogolla. Object constraint language (ocl): a definitive guide. In International
school on formal methods for the design of computer, communication and software systems, pages 58–
90. Springer, 2012.

[CZ20] Sebastian Copei and Albert Zündorf. The fulib solution to the ttc 2020 migration case. arXiv preprint
arXiv:2012.05231, 2020.

[ful] Fulib web service. https://www.fulib.org/.

[Gam95] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson Education
India, 1995.

REFERENCES 7

[ttc] Ttc2021 case: Incremental recompilation of laboratory workflows. https://www.transformation-tool-
contest.eu/2021 labflows.pdf. Last viewed 25.05.2021.

[ZCD+19] Albert Zündorf, Sebastian Copei, Ira Diethelm, Claude Draude, Adrian Kunz, and Ulrich Norbisrath.
Explaining business process software with fulib-scenarios. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering Workshop (ASEW), pages 33–36. IEEE Computer
Society, 2019.

