
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The TTC 2021 OCL2PSQL Case
Hoang Nguyen Phuoc Bao
ngpbhoang1406@gmail.com

Vietnamese-German University
Binh Duong, Vietnam

Antonio García-Domínguez
a.garcia-dominguez@aston.ac.uk

Aston University
Birmingham, United Kingdom

Manuel Clavel
manuel.clavel@vgu.edu.vn

Vietnamese-German University
Binh Duong, Vietnam

ABSTRACT
The Object Constraint Language (OCL) is a textual, declarative lan-
guage used as part of the UML standard for specifying constraints
and queries on models. As such, generating code from OCL expres-
sions is part of an end-to-end model-driven development process.
Certainly, this is the case for database-centric application devel-
opment, where integrity constraints and queries can be naturally
specified using OCL. Not surprisingly, there have been already sev-
eral attempts to map OCL into SQL. In this case study, we invite
participants to implement, using their own model-transformation
methods, one of these mappings, called OCL2PSQL. We propose
this case study as a showcase for different methods to prove their
readiness for coping with moderately complex model transforma-
tions, by showing the usability, conciseness, and ease of understand-
ing of their solutions when implementing a non-trivial subset of
OCL2PSQL.

KEYWORDS
Model-transformation, OCL, SQL, TTC
ACM Reference Format:
Hoang Nguyen Phuoc Bao, Antonio García-Domínguez, and Manuel Clavel.
2021. The TTC 2021 OCL2PSQL Case. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The Object Constraint Language (OCL) [7] is a textual language
typically used, as part of the UML standard [8], for specifying con-
straints and queries on models. It is a pure specification language:
expressions evaluate to values without changing anything in the
underlying model. OCL is a strongly-typed language: expressions
either have a primitive type, a class type, a tuple type, or a collection
type. The language provides standard operators on primitive data,
tuples, and collections. It also provides a dot-operator to access
the properties of the objects, and several iterators to iterate over
collections.

The Structured Query Language (SQL) [9] is a special-purpose
programming language designed for managing data in relational
database management systems (RDBMS). Its scope includes data
insert, query, update and delete, schema creation and modification,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and data access control. Although SQL is, to a great extent, a declar-
ative language, it also contains stored-procedures. These are routines
stored in the database that may execute loops using the so-called
cursors.

In the context of model-driven engineering, there exist several
proposals for translating OCL into SQL [1, 3–5], which mostly differ
in the way OCL iterators are translated. In particular, [3, 4] resort
to imperative features of SQL (e.g. loops and cursors) for translat-
ing OCL iterators, while [1] introduces a mapping (OCL2PSQL)
which only uses standard subselects and joins for translating OCL
iterators1.

Example 1.1. As an example of the transformations produced by
OCL2PSQL, suppose that we want to know if, in a given scenario,
there is exactly one car. We can formalize this query in OCL as
follows:
Car.allInstances()−>size()=1
where we compare the number of objects in the class Car with
an integer 1. OCL2PSQL translates this expression into an SQL
select-statement as the comparison between the result of two-
subqueries (e.g. TEMP_left.res and TEMP_right.res), representing
respectively the result when evaluating each side of the compar-
ison of the given OCL expression (e.g. Car.allInstances()−>size()
and 1). Furthermore, the subquery TEMP_left returns the size of
its subquery, aliased TEMP_src, which is the translation of the sub-
expression Car.allInstances().
SELECT TEMP_left.res = TEMP_right.res AS res, 1 AS val
FROM (

SELECT COUNT(*) AS res, 1 AS val
FROM (

SELECT Car_id AS res, 1 AS val
FROM Car

) AS TEMP_src
) AS TEMP_left
JOIN (

SELECT 1 AS res, 1 AS val
) AS TEMP_right

The full recursive definition of OCL2PSQL can be found in [1],
but we have included in Appendix A the subset of the OCL2PSQL
definition of the expressions involved in this competition. The
solution authors can also use Appendix A to understand the above
transformation.

The correctness of the mapping is formulated as follows. Let 𝑒
be an OCL expression (with no free variables) and let O be a sce-
nario of its context model. Then, the evaluation of the expression
𝑒 in the scenario O should return the same result that the execu-
tion of the query OCL2PSQL(𝑒), i.e., the SQL query generated by
1The letter “P” in OCL2PSQL stands for pure SQL. The idea is that OCL2PSQL only
uses the declarative features of SQL for mapping OCL expressions.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Hoang Nguyen Phuoc Bao, Antonio García-Domínguez and Manuel Clavel

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

OCL2PSQL from 𝑒 , in the database OCL2PSQL(O), i.e., the database
corresponding to O according to OCL2PSQL.2

The TTC 2021 OCL2PSQL Case welcomes participants to imple-
ment the subset of the OCL2PSQLmapping provided in Appendix A
using their own model-transformation methods. This case study
can serve as a showcase for different methods to prove their readi-
ness to coping with moderately complex model-transformations,
by showing the usability, conciseness, and understandability of
their solutions when implementing the subset of the OCL2PSQL.
Participants are also welcome to extend or modify the given subset
of the OCL2PSQL mapping, or even to propose their own mapping
from OCL to SQL, in which cases they should also provide con-
vincing arguments that their solution is correct. More information
about the main task will be provided in the later section. Finally,
participants are most welcome to propose their own attributes of
interests: for example, flexibility for multiple RDBMSs, or support
for formal verification.

All resources for this case are available on Github 3. Please fol-
low the description in the footnote and create a pull request with
your own solution after you have submitted your description to
EasyChair.

The rest of the document is structured as follows: Section 2
describes the input and output of the OCL2PSQL transformation.
Then, Section 3 provides the main task that should be tackled in a
solution (participants are free to propose their own tasks of inter-
est). Finally, Section 4 proposes the case evaluation scheme for the
contest.

2 TRANSFORMATION DESCRIPTION
OCL2PSQL is a recently proposed mapping from OCL to SQL [1]. It
addresses some of the challenges and limitations of previous OCL-
to-SQL mappings, particularly with respect to the execution-time
efficiency of the generated SQL queries. [2]

Next, we give a detail description of the input and output meta-
models for the TTC 2021 OCL2PSQL Case. The input metamodels
represent the part of OCL language that is covered in this competi-
tion. The output metamodel represents the part of the SQL language
that is used by OCL2PSQL to translate the aforementioned part
of OCL language. Obviously, for solutions that extend or modify
the OCL2PSQL mapping, as well as for solutions that propose an
entirely different mapping from OCL to SQL, the input and output
metamodels presented here may need to be extended or modify
accordingly.

2.1 Input Metamodel
OCL is a contextual language: its expressions are written in the con-
text provided by a data model. Consequently, the input metamodel
for OCL2PSQL can be seen as consisting of two, inter-related meta-
models: namely, the metamodel for data models and the metamodel
for OCL expressions.

2The OCL2PSQL mapping rests on an underlying mapping between data models and
SQL database schema. The full definition of this mapping is also provided in [1] but it
is not needed in this case.
3https://github.com/bluezio/ttc2021-ocl2psql (temporary, to be moved to main TTC
Github organisation if accepted)

2.1.1 Input metamodel for data models. For OCL2PSQL, a data
model contains classes and associations. A class may have attributes
and associations-ends. The multiplicity of an association-end is
either ‘one’ or ‘many’.

The data model metamodel for OCL2PSQL is shown in Figure
1. DataModel is the root element and contains a set of Entitys.
Every Entity represents a class in the data model: it contains a
set of Attributes and a set of AssociationEnds. Each Attribute
represents an attribute of a class: it has a name and a type. Each
AssociationEnd represents an association-end: it has a name, an
association class name and an Multiplicity value. Each Associat-
ionEnd is also linked to its opposite AssociationEnd, and with its
target Entity.

Figure 1: OCL2PSQL metamodel for data models.

2.1.2 Input metamodel for OCL expressions. The definition of the
OCL mapping as presented in Appendix A only covers a subset
of the OCL language. For the OCL expressions involved in this
competition, we have simplified themetamodel for OCL expressions
to the minimum. For interested readers and solution authors who
would like to extend or implement their own implementation, the
class diagram of the OCL expression can be found in its specification
document in [7]. The OCL2PSQLmetamodel for OCL expressions in
this competition is shown in Figure 2. In a nutshell, OclExpression
is the root element. It is an abstract class. An OclExpression can be
either a literal expression, a CallExp, a VariableExp, or a TypeExp.
Next, we describe each of these classes.

A literal expression represents a literal value. In our case, it
can be either an IntegerLiteralExp, a StringLiteralExp, or a
BooleanLiteralExp. Each of these classes contains an attribute
to represent, respectively, an integer, a string, or a boolean literal
value.

A TypeExp represents a type expression. It contains an attribute
referredType of type Entity, which belongs to the OCL2PSQL
metamodel for data models.

A VariableExp represents a variable expression.
A CallExp represents an expression that consists of calling a

feature over a source, which is represented by an OclExpression.
CallExp is an abstract class: it can be either an OperationCallExp,
a PropertyCallExp, an AssociationClassCallExp, or an Itera-
torExp.

2

https://github.com/bluezio/ttc2021-ocl2psql

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

The TTC 2021 OCL2PSQL Case Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: OCL2PSQL metamodel for OCL expression.

An OperationCallExp represents an expression that calls an
operation over its source, possibly with arguments. For our com-
petition, we only consider the equality comparison, i.e. =; con-
junctive operation, i.e. AND; and two collections’ operations, i.e.
allInstances() and size().

A PropertyCallExp represents an expression that calls an at-
tribute over a source object. The former is represented by an
Attribute and the later is represented by an Entity; both be-
long to the OCL2PSQL metamodel for data models. OCL2PSQL
only supports PropertyCallExp expressions whose source is an
VariableExp expression. For example, given 𝑐 is a Variable of
type Car, 𝑐 .color is a PropertyCallExp expression to get the color
of the Car.

An AssociationClassCallExp represents an expression that
calls an association-end over a source object. The former is repre-
sented by an AssociationEnd and the later is represented by an
Entity; both belong to the OCL2PSQL metamodel for data models.
OCL2PSQL only supports AssociationClassCallExp expressions
whose source is an VariableExp expression. For example, given
𝑐 is a Variable of type Car and owners is the association-end of
Car, then 𝑐 .owners is a AssociationClassCallExp expression to
get the owners of the Car.

An IteratorExp represents an expression that calls an iterator
over a source collection. The body of the iterator is represented by
an OclExpression expression. The iterator-variable is represented
by a Variable. In this competition, we support the following kinds
of iterators: exists, and collect.

Figure 3 shows the object diagram ofCar.allInstances()−>size()=1
in Example 1.1. It is an OperationCallExpwith referredOperation
as =, in which:

• The source is another expression of class OperationCallExp
with referredOperation as size, representing the sub-
expression Car.allInstances()−>size(). Furthermore, in the
aforementioned sub-expression, the source is, yet, another

expression of class OperationCallExpwith referredOper-
ation as allInstances, representing the sub-expression
Car.allInstances(). Finally, in the aforementioned sub-expres-
sion, the source is a TypeExp, representing the sub-expression
Car, which refers to the Car Entity in the data model.

• The argument is an IntegerLiteralExpwith integerValue
of 1.

Figure 3: Object diagram of Car.allInstances()−>size()=1

2.2 Output Metamodel
For OCL2PSQL, an SQL query is a basic SQL SELECT-statement,
which may contain subselects, WHERE-clauses, GROUP BY-clauses,
and JOINs. Figure 4 shows the overview diagram of a SQL SELECT-
statement .

2.2.1 Output metamodel for SQL select-statements. The Select-
Statement is the root element: it contains a PlainSelect , which
represents the body of the select-statement.

A PlainSelect may contains the following objects: a list of
selItems elements, each of type SelectItem; a fromItem element

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Hoang Nguyen Phuoc Bao, Antonio García-Domínguez and Manuel Clavel

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 4: OCL2PSQL metamodel for SQL select-statements.

of type FromItem; a whereExp element of type Expression; a list
of joins elements, each of type Join; and a groupBy element of
type GroupByElement. Next, we describe each of these classes:

A SelectItem represents a column that the select-statement
retrieves. It contains an Expression element and an Alias element.

A FromItem element represents the table or subselect fromwhich
the select-statement retrieves information. It is an interface. A
FromItem element can be either a Table or a SubSelect. The for-
mer represents a table. The later represents a subselect.

A whereExp reference of type Expression represents a where-
clause.

A Join element represents a join with a rightItem of type
FromItem, possibly according to its element onExp of type Expre-
ssion.

A GroupByElement element represents a groupby-clause. It con-
tains groupByExps, a list of objects of type Expression that defines
how the rows are to be grouped by.

Expression is an interface element which plays many role in a
SQL-select statement. For the sake of simplicity, the realizations
of Expression are hidden from Figure 4. Next, we describe these
realizations which our cases will need.

A LongValue and StringValue represent, respectively, a literal
integer and a literal string in SQL.

A Column represents a column of a table in SQL.
A BinaryExpression represents a binary expression in SQL.

It contains a leftExp element and a rightExp element, both of
type Expression. BinaryExpression is an abstract class. It can be
either a logical expression, (OrExpression or AndExpression) , or
a comparison expression (EqualsToExpression or GreaterThan-
Expression).

An IsNullExpression represents an IS NULL-expression in SQL.
It contains an Exp element of type Expression.

A CountAllFunction represents a COUNT(*)-expression in SQL.

A CaseExpression represents a CASE-expression in SQL. It con-
tains whenClauses, a list of objects of type WhenClause, represent-
ing WHEN-clauses in SQL.

A SubSelect represents a subselect-expression in SQL. It con-
tains a selectBody of type PlainSelect .

For the sake of illustration, Figure 5 shows the object diagram of
the following SQL-select statement:
SELECT COUNT(*) > 0 AS res
FROM Car AS c
WHERE c.color IS NULL

It is a SelectStatement with a PlainSelect as selectBody. The
PlainSelect contains:

• A SelectItem element that represents the clause
(SELECT) COUNT(*) > 0 AS res
It contains a GreaterThanExpression expression, in which
the leftExp is a CountAllFunction expression, and the
rightExp is a LongValue expression with value 0. Further-
more, it has an Alias named res.

• A Car Table with an Alias named c, represents the clause
(FROM) Car AS c.

• A IsNullExpression element that represents the clause
(WHERE) c.color IS NULL
It contains a Column color referred from the Table Car of
the previous clause (notice that in this case, the alias c of
the Table Car is used as a name for the table referred to the
color column).

3 MAIN TASK
The main task for the participants in the TTC 2021 OCL2PSQL Case
consists of implementing, using their own model-transformation
methods, the subset of OCL2PSQL mapping as it is defined in Ap-
pendix A. Participants are free to extend or modify the OCL2PSQL

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

The TTC 2021 OCL2PSQL Case Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 5: Object diagram of SELECT COUNT(*) > 0 as res
FROM Car c WHERE c.color IS NULL

mapping, or even to propose their own mapping from OCL to SQL,
in which case they should also provide convincing arguments that
their solution is correct with respect to the semantics of OCL and
SQL. 4.

During the contest, the participants will be presented with dif-
ferent challenges of increasing complexity. Each challenge will be
an OCL2PSQL OCL expression, i.e., an instance of the OCL2PSQL
metamodel for OCL. The context for all the challenges will be an
OCL2PSQL data model, i.e., an instance of the OCL2PSQL meta-
model for data models. Then, the participants will be asked to
generate the solutions for these challenges, applying their own
transformation rules. Very importantly: (i) each solution should be
a valid SQL select-statement in the database schema correspond-
ing to the given data model, according to the definition of the
OCL2PSQL mapping; moreover, (ii) each solution should be an SQL
select-statement returning a result-table with (at least) a column
res. Then, when executing the solution for a challenge on a given
scenario, this column res will be interpreted as holding the result
of evaluating the given challenge in the same scenario. Finally, the
solutions will be checked for correctness, using a set of selected
scenarios.

For the participants’ convenience, we have grouped the chal-
lenges into different stages. Each stage contains challenges that
apply similar OCL2PSQL mapping rules, particularly:

• Stage0 only requires the mapping rule for literals. The OCL
expressions in this stage are context-free.

• Stage1 is similar to Stage1, with additional mapping rules
for OperationalCallExp (operator: equality and conjunc-
tion). The OCL expressions in this stage are also context-free.

• Stage2 requires the mapping rule for OperationalCallExp
(operator allInstances) and TypeExp. From this stage on,
the OCL expressions are context-dependent, i.e., the under-
lying context model will be needed.

4For the participants who would like to extend their implementation beyond the subset
of OCL language provided for our competition, please revise the full version of our
OCL2PSQL mapping in [1] with the “fixes” included in Appendix B.

• Stage3 is similar to Stage2, with additional mapping rule
for OperationalCallExp (operator: size and equality).

• Stage4 is similar to Stage3, with additional mapping rule
for VariableExp and IteratorExp (kind: collect).

• Stage5 is similar to Stage4, with additional mapping rule
for PropertyCallExp.

• Stage6 is similar to Stage4, with additional mapping rule
for AssociationClassCallExp.

• Stage7 is similar to Stage5 and Stage6, with additional
mapping rule for IteratorExp (kind: exists).

• Stage8 is a more complex version of Stage7, with nested
IteratorExp of kind exists.

For the purpose of testing, the participants can find the following
material in the case materials repository:

• In the docs folder, the file challenges.txt contains a list of
challenges grouped in the aforementioned stages. Each stage
has a unique number, and each challenge within a stage has
also a unique number. The greater the number of a stage,
the greater its complexity. The context for all challenges
in challenges.txt is the data model CarPerson shown in
Figure 6.
In the same folder, the file scenarios.txt contains a list of
scenarios. Each scenario describes an instance of the data
model CarPerson. Then, for each scenario, and each (rele-
vant) stage/challenge listed in challenges.txt, the file
scenarios.txt contains the correct result: i.e., the expected
SQL result that corresponds to the evaluation of the given
stage/challenge in the given scenario.

• The folder input contains the challenges listed in challeng-
es.txt in XMI format. More specifically, each file Stage𝑖-
Challenge 𝑗.xmi contains the representation, in XMI-format,
of the challenge 𝑗 within the stage 𝑖 in the file challeng-
es.txt.
In the same folder, the file CarPerson.xmi contains the data
model CarPerson in XMI-format.

• In the folder metamodels, the file ocl.ecore contains the
EMF implementation of the OCL2PSQL metamodel for OCL
expressions. Also in the same folder, the file sql.ecore con-
tains the EMF implementation of the OCL2PSQL metamodel
for SQL-select statements.

Figure 6: The CarPerson data model.

4 BENCHMARK FRAMEWORK
The case resources on Github include an automated benchmark
framework for systematic measurement of the performance and
correctness of the various solutions. It is based on the framework

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Hoang Nguyen Phuoc Bao, Antonio García-Domínguez and Manuel Clavel

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Listing 1: solution.ini file for the ReferenceXMI solution
[build]
default=mvn compile
skipTests=mvn compile

[run]
cmd=mvn −f pom.xml −quiet −Pxmi exec:exec

of the TTC 2017 Smart Grid case [6], without the visualisation
components. Solution authors are heavily recommended to adapt
their solutions to this framework, to allow for the easier integration
and comparison of the various solutions.

The configuration of the benchmark framework for the TTC
2021 OCL2PSQL case is stored in the file config.json inside the
folder config. This file includes the definitions of the various stages
and challenges, the name of the tools to be run, the number of repe-
titions to be applied, the timeout in milliseconds for each execution
and the connection information for the local MySQL database. Cur-
rently, the file config.json has already contained the stages and
challenges listed in the file challenges.txt.

In the folder docker, the Dockerfile contains the instruction
to build a MySQL 5.7 Docker image that contains all the SQL data
scenarios of CarPerson database corresponding to the ones listed in
scenarios.txt. This image is currently used for building databases
to test the correctness of the reference solution. Solution authors
can use either the image we provide or their own local MySQL
database installation, in which they would need to change the
information in the config.

4.1 Solution requirements
All solutionsmust be forks of themain Github project, and should be
submitted as pull requests after the descriptions have been uploaded
to EasyChair.

All solutions should be in a subdirectory of the solutions folder,
and inside this subdirectory they should include a solution.ini
file describing how the solution should be built and how it should
be run. As an example, Listing 1 shows the file for the reference
solution. The build section provides the default and skipTests
fields for specifying how to build and test, and how to simply build,
respectively. In the run section, the cmd field specifies the command
to run the solution.

Solutions should print to their standard output streams a se-
quence of lines with the following fields, separated by semicolons:

• Tool: name of the tool.
• Stage: integer with the stage within the case whose chal-
lenge is being solved.

• Challenge: integerwith the challengewithin the stagewhich
is being solved.

• RunIndex: integer with the current repetition of the trans-
formation.

• MetricName: may be “TransformTimeNanos”, “TestTime-
Nanos”, or “ScenarioID” where ID is the identifier of the
scenario under test.

• MetricValue: the value of the metric:

– For “TransformTimeNanos”, an integer with the nanosec-
onds spent performing the transformation.

– For “TestTimeNanos”, an integer with the nanoseconds
spent testing the correctness of the transformation through
executing the transformed SQL-select statement on differ-
ent database scenarios.

– For metrics following the “ScenarioID” pattern, a string of
either “passed” or “failed”, indicating either the correctness
of the transformation on that scenario.

The repetition of the transformation is handled by the framework.
Moreover, for every repetition, the framework provides, through
environment variables, the following information: the run index,
stage number and challenge number, the OCL expression corre-
sponding to the challenge in plaintext, as well as the file path of
that expression in XMI-format, and the file path of the context of
the challenge, also in XMI-format. More specifically, the available
environment variables are:

• MySQLUsername: the username of the local MySQL data-
base system on which the statement will be run.

• MySQLPassword: the password of the given user.
• MySQLPort: the port number the local MySQL database
system.

• StageIndex: the index of the stage whose challenge is to be
run.

• ChallengeIndex: the index of the challenge within the
stage which will be run.

• OCLQuery: the OCL expression, in text-format, correspond-
ing to the challenge to be run.

• PathToOCLXMI: the absolute path to the file containing
the OCL expression, in XMI-format, corresponding to the
challenge to be run.

• PathToSchemaXMI: the absolute path to the file contain-
ing the SQL schema, in XMI-format, corresponding to the
context (data model) of the challenges to be run.

• RunIndex: the index of the repetition to be run.
• Tool: the name of the tool (the name of the solutions sub-
folder).

Solution authors may wish to consult the reference solution for
guidance on how to use the various environment variables and how
to test the correctness of your transformations. Solution authors
are free to reuse the source code of this reference solution for these
aspects (e.g. the CaseLauncher and Configuration classes), as
well as the lib/sql.jar library, in the reference solution , that
parses the SQL-select statement from XMI model to plaintext. The
reference solution uses Maven to retrieve the appropriate libraries
for communicating with the our own implementation of OCL2PSQL.
In addition, we have also installed locally additional libraries in
folder lib using a shell script. The instruction for running the
reference solution can be found on the benchmark repository.

4.2 Running the benchmark
The benchmark framework needs Python 3.3 or later to be installed,
and the reference solution requires Maven 3 and Java 8 or later.
Solution authors are free to use alternative frameworks and pro-
gramming languages, as long as these dependencies are explicitly
documented. For the final evaluation, it is planned to construct a

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

The TTC 2021 OCL2PSQL Case Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Docker image with all solutions, and this will require installing
those dependencies into the image.

If all dependencies are installed, the benchmark can be run
with python scripts/run.py (potentially python3 if Python 2.x
is installed globally in the same system).

5 EVALUATION
The benchmark frameworkwill provide independentmeasurements
of the correctness, completeness, and time usage of the solutions
provided by the participants. Attendees to the contest will evaluate
the usability, conciseness, and understandability of the transforma-
tion rules that define the different solutions, as well as the other
attributes of interest that the solution providers may want to focus
in. In this regard, although some solutions may not be entirely
complete or may be hard to understand, they may still serve as
examples of active research areas within model transformations
that the community may wish to showcase. To recognize these
contributions, an audience-driven “Most Promising” award will be
given.

REFERENCES
[1] H. Nguyen Phuoc Bao and M. Clavel. 2019. OCL2PSQL: An OCL-to-SQL Code-

Generator for Model-Driven Engineering. In Future Data and Security Engineering
- 6th International Conference, FDSE 2019, Proceedings (Lecture Notes in Computer
Science), T. Khanh Dang, J. Küng, M. Takizawa, and S. Ha Bui (Eds.), Vol. 11814.
Springer, 185–203.

[2] M. Clavel and H. Nguyen Phuoc Bao. 2019. Mapping OCL into SQL: Challenges
and Opportunities Ahead. In 19th International Workshop in OCL and Textual
Modeling (OCL 2019) co-located with MODELS 2019 (CEUR Workshop Proceedings),
A. D. Brucker, G. Daniel, and F. Jouault (Eds.), Vol. 2513. CEUR-WS.org, 3–16.

[3] M. Egea and C. Dania. 2019. SQL-PL4OCL: an automatic code generator from OCL
to SQL procedural language. Software and Systems Modeling 18, 1 (2019), 769–791.

[4] M. Egea, C. Dania, and M. Clavel. 2010. MySQL4OCL: A Stored Procedure-Based
MySQL Code Generator for OCL. ECEASST 36 (2010).

[5] F. Heidenreich, C. Wende, and B. Demuth. 2008. A Framework for Generating
Query Language Code from OCL Invariants. ECEASST 9 (2008).

[6] Georg Hinkel. 2017. An NMF solution to the Smart Grid Case at the TTC 2017.
In Proceedings of the 10th Transformation Tool Contest (TTC 2017), co-located with
the 2017 Software Technologies: Applications and Foundations (STAF 2017), Marburg,
Germany, July 21, 2017 (CEUR Workshop Proceedings), Antonio García-Domínguez,
Georg Hinkel, and Filip Krikava (Eds.), Vol. 2026. CEUR-WS.org, 13–17. http:
//ceur-ws.org/Vol-2026/paper5.pdf

[7] Object Management Group. 2014. Object Constraint Language specification Version
2.4. Technical Report.

[8] Object Management Group. 2017. Unified Modeling Language. Technical Report.
[9] International Organization for Standardization. 2011. ISO/IEC 9075-(1–10) Infor-

mation technology – Database languages – SQL. Technical Report.

A THE MAPPING OCL2PSQL IN A NUTSHELL
The mapping OCL2PSQL is defined recursively over the structure of
OCL expressions. To describe the key idea underlying its definition,
and to illustrate it with the presentation of some recursive cases,
we need to introduce first some notation.

Notation. Let qry be an SQL query. Let db be an SQL database.
Then, we denote by Exec(qry, db) the result of executing qry on db.
Let 𝑒 be an OCL expression. Then, we denote by FVars(𝑒) the set of
variables that occur free in 𝑒 , i.e., that are not bound by any iterator.
Let 𝑒 be an OCL expression, and let 𝑣 be a variable introduced in
𝑒 by an iterator expression 𝑠 −>iter (𝑣 | 𝑏). Then, we denote by
src𝑒 (𝑣) the source 𝑠 of 𝑣 in 𝑒 . Let 𝑒 be an OCL expression and let
𝑒 ′ be a subexpression of 𝑒 . Then, we denote by SVars𝑒 (𝑒 ′) the set
of variables which (the value of) 𝑒 ′ depends on, and is defined as

follows:

SVars𝑒 (𝑒 ′) =
⋃

𝑣∈FVars(𝑒′)
{𝑣} ∪ SVars𝑒 (src𝑒 (𝑣)).

Let 𝑒 be an OCL expression, such that FVars(𝑒) = ∅. Let O be a
scenario. Then, we denote by Eval(𝑒,O) the result of evaluating 𝑒
in O.

Finally, let D be a data model. Then, we denote by map(D) the
SQL database schemata corresponding toD, according toOCL2PSQL.
Let D be a data model, and let O be a scenario of D. Then, we
denote by map(O) the instance ofD corresponding to O, according
to OCL2PSQL. Let 𝑒 be an OCL expression, let 𝑒 ′ be a subexpression
of 𝑒 . Then, we denote by map𝑒 (𝑒 ′) the SQL query corresponding
to 𝑒 ′, according to OCL2PSQL.

Definition: key idea and some cases. The different recursive cases
follow the same design principle: namely, let 𝑒 be an OCL2PSQL-
expression, let 𝑒 ′ be a subexpression of 𝑒 , and let O be a scenario.
Then, Exec(map𝑒 (𝑒 ′),map(O)) returns a table, with a column res,
a column val, and, for each 𝑣 ∈ SVars𝑒 (𝑒 ′), a column ref_𝑣 . Infor-
mally, for each row in this table: (i) the columns ref_𝑣 contain a
valid “instantiation” for the iterator variables of which the evalua-
tion of 𝑒 ′ depends on (if any); (ii) the column val contains 0 when
evaluating the expression 𝑒 ′, with the “instantiation” represented
by the columns ref_𝑣 , evaluates to the empty set; otherwise, the
column val contains 1; (iii) when the column val contains 1, the
column res contains the result of evaluating the expression 𝑒 ′ with
the “instantiation” represented by the columns ref_𝑣 ; when the
column val contains 0, the value contained in the column res is
not meaningful.

We define the recursive definition of OCL2PSQL mappings that
will be used in our competition. The definition here was taken
from the original paper and has already included the corrigenda in
Appendix B.

Literal strings (correspondingly: integers,
booleans)
Let 𝑒 be an OCL expression. Let 𝑒 ′ be a subexpression of 𝑒 . Let
𝑒 ′ = 𝑙 , where 𝑙 is either a literal string. Then,

map𝑒 (𝑙) =
SELECT 𝑙 as res, 1 as val

Variables
Let 𝑒 be an OCL expression. Let 𝑒 ′ be a subexpression of 𝑒 . Let
𝑒 ′ = 𝑣 , where 𝑣 is a variable. Then,

map𝑒 (𝑣) =
SELECT

TEMP_dmn.res as res,
TEMP_dmn.res as ref_𝑣,
TEMP_dmn.val as val,
TEMP_dmn.ref_𝑣 ′ as ref_𝑣 ′, for each 𝑣 ′ ∈ SVars𝑒 (src(𝑣))

FROM (map𝑒 (src(𝑣))) as TEMP_dmn

7

http://ceur-ws.org/Vol-2026/paper5.pdf
http://ceur-ws.org/Vol-2026/paper5.pdf

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Hoang Nguyen Phuoc Bao, Antonio García-Domínguez and Manuel Clavel

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Attribute-expressions
Let 𝑒 be an OCL expression. Let 𝑒 ′ be a subexpression of 𝑒 . Let 𝑒 ′ = 𝑣

.att, where 𝑣 is a variable of class-type 𝑐 and att is an attribute of
the class 𝑐 . Then,
map𝑒 (𝑣 .att) =
SELECT
𝑐.att as res,
TEMP_obj.val as val,
TEMP_obj.ref_𝑣 ′ as ref_𝑣 ′, for each 𝑣 ′ ∈ SVars𝑒 (𝑣)

FROM (map𝑒 (𝑣)) as TEMP_obj
LEFT JOIN 𝑐
ON TEMP_obj.ref_𝑣 = 𝑐.𝑐_id AND TEMP_obj.val = 1

Association-ends-expressions
Let 𝑒 be an OCL expression. Let 𝑒 ′ be a subexpression of 𝑒 . Let
𝑒 ′ = 𝑣 .ase, where 𝑣 is a variable of class-type 𝑐 , and ase is an
association-end of the class 𝑐 .

Let Assoc(ase) be the association to which ase belongs, and let
Oppos(ase) be the association-end at the opposite end of ase in
Assoc(ase). Then,
map𝑒 (𝑣 .ase) =
SELECT

Assoc(𝑎𝑠𝑒).ase as res,
CASE Assoc(ase).Oppos(ase) IS NULL
WHEN 1 THEN 0
ELSE 1 END as val,

TEMP_src.ref_𝑣 ′ as ref_𝑣 ′, for each 𝑣 ′ ∈ SVars𝑒 (𝑣)
FROM (map𝑒 (𝑣)) as TEMP_src
LEFT JOIN Assoc(ase)
ON TEMP_src.ref_𝑣 = Assoc(ase).Oppos(ase)

AllInstances-expressions
Let 𝑒 be an OCL expression. Let 𝑒 ′ be a subexpression of 𝑒 . Let
𝑒 ′ = 𝑐 .allInstances(), where 𝑐 is a class type. Then,
map𝑒 (𝑐 .allInstances())=
SELECT 𝑐_id as res, 1 as val FROM 𝑐

size-expressions
Let 𝑒 be an OCL expression. Let 𝑒 ′ be a subexpression of 𝑒 . Let
𝑒 ′ = 𝑠 −>size(). We need to consider the following cases:

• FVars(𝑒 ′) = ∅. Then,
map𝑒 (𝑠 −>size()) =
SELECT

COUNT(*) as res,
1 as val

FROM (map𝑒 (𝑠)) AS TEMP_src.
• FVars(𝑒 ′) ≠ ∅, Then,
map𝑒 (𝑠 −>size()) =
SELECT

CASE TEMP_src.val = 0
WHEN 1 THEN 0
ELSE COUNT(*) END as res,

TEMP_src.ref_𝑣 as ref_𝑣 , for each 𝑣 ∈ SVars𝑒 (𝑠)
1 as val

FROM (map𝑒 (𝑠)) AS TEMP_src

GROUP BY
TEMP_src.ref_𝑣 , for each 𝑣 ∈ SVars𝑒 (𝑠),
TEMP_src.val.

=-expressions (correspondingly, and-expressions)
Let 𝑒 be an OCL expression. Let 𝑒 ′ be a subexpression of 𝑒 . Let
𝑒 ′ = (𝑙 =𝑟). For our competition, we only need to consider the
following cases:

• FVars(𝑙) = FVars(𝑟) = ∅. Then,
map𝑒 (𝑙 =𝑟) =
SELECT

TEMP_left.res = TEMP_right.res as res,
1 as val

FROM
(map𝑒 (𝑙)) AS TEMP_left,
(map𝑒 (𝑟)) AS TEMP_right

• FVars(𝑙) ≠ ∅, SVars(𝑟) ⊆ SVars(𝑙). Then,
map𝑒 (𝑙 =𝑟) =
SELECT

TEMP_left.res = TEMP_right.res as res,
CASE

TEMP_left.val = 0 OR TEMP_right.val = 0
WHEN 1 THEN 0
ELSE 1 END as val,

TEMP_left.ref_𝑣 as ref_𝑣 , for each 𝑣 ∈ SVars𝑒 (𝑙)
FROM (map𝑒 (𝑙)) AS TEMP_left
[LEFT] JOIN (map𝑒 (𝑟)) AS TEMP_right
[ON TEMP_left.ref_𝑣 = TEMP_right.ref_𝑣 ,

for each 𝑣 ∈ SVars𝑒 (𝑙) ∩ SVars𝑒 (𝑟)].

collect-expressions
Let 𝑒 be an OCL expression. Let 𝑒 ′ be a subexpression of 𝑒 . Let 𝑒 ′ = 𝑠

−>collect(𝑣 | 𝑏). For our competition, we only need to consider the
following case:

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒 ′) = ∅.
SELECT TEMP_body.res as res,

TEMP_body.val as val,
FROM (map𝑒 (𝑏)) as TEMP_body

exists-expressions
Let 𝑒 be an OCL2PSQL-expression. Let 𝑒 ′ be a subexpression of 𝑒 .
Let 𝑒 ′ = 𝑠 −>exists(𝑣 | 𝑏). For our competition, we only need to
consider the following cases:

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒 ′) = ∅. Then
SELECT

COUNT(*) > 0 as res,
1 as val

FROM (map𝑒 (𝑏)) as TEMP_body
WHERE TEMP_body.res = 1

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒 ′) ≠ ∅. Then
SELECT

CASE TEMP_body.ref_𝑣 IS NULL
WHEN 1 THEN 0
ELSE TEMP_body.res END as res,

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

The TTC 2021 OCL2PSQL Case Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1 as val,
TEMP_src.ref_𝑣 ′ as ref_𝑣 ′,

for each 𝑣 ′ ∈ SVars(𝑠),
TEMP_body.ref_𝑣 ′ as ref_𝑣 ′,
for each 𝑣 ′ ∈ SVars(𝑏) \ SVars(𝑠) \ {𝑣}

FROM (map𝑒 (𝑠)) as TEMP_src
LEFT JOIN (

SELECT COUNT(*) > 0 as res,
TEMP_body.ref_𝑣 ′ as ref_𝑣 ′,

for each 𝑣 ′ ∈ SVars(𝑏)
FROM (map𝑒 (𝑏)) as TEMP_body
WHERE TEMP_body.res = 1
GROUP BY TEMP_body.ref_𝑣 ′,

for each 𝑣 ′ ∈ SVars(𝑏) \ {𝑣}
) as TEMP_body
ON TEMP_src.ref_𝑣 ′ = TEMP_body.ref_𝑣 ′,

for each 𝑣 ′ ∈ SVars(𝑠)

B CORRIGENDUM
In [1, Section 4.3], in the second case considered in the definition
of the mapping for Exists-expressions instead of:

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒 ′) ≠ ∅. Then
SELECT

CASE TEMP_src.ref_𝑣 IS NULL
WHEN 1 THEN 0
ELSE TEMP.res END as res,

. . .
LEFT JOIN (

SELECT COUNT(*) > 0 as res,
TEMP_body.ref_𝑣 ′ as ref_𝑣 ′,

for each 𝑣 ′ ∈ SVars(𝑏) \ {𝑣}
it should read:
• 𝑣 ∈ FVars(𝑏) and FVars(𝑒 ′) ≠ ∅. Then
SELECT

CASE TEMP_body.ref_𝑣 IS NULL

WHEN 1 THEN 0
ELSE TEMP_body.res END as res,

. . .
LEFT JOIN (

SELECT COUNT(*) > 0 as res,
TEMP_body.ref_𝑣 ′ as ref_𝑣 ′,

for each 𝑣 ′ ∈ SVars(𝑏)
And similar errors should be corrected in [1, Section 4.3], in

the second case considered in the definition of the mapping for
ForAll-expressions.

9

	Abstract
	1 Introduction
	2 Transformation Description
	2.1 Input Metamodel
	2.2 Output Metamodel

	3 Main task
	4 Benchmark Framework
	4.1 Solution requirements
	4.2 Running the benchmark

	5 Evaluation
	References
	A The mapping OCL2PSQL in a nutshell
	B Corrigendum

