
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Incremental Recompilation of Laboratory Workflows
Georg Hinkel

georg.hinkel@tecan.com

Tecan Software Competence Center GmbH

Wiesbaden, Germany

ABSTRACT

When executing high-level process models, errors sometimes need

to be handled by changing the planned process on the fly, leaving

the jobs that have already been executed intact. Therefore, transfor-

mations that transform such a high-level process model to low-level

jobs need to be incremental and respect low-level job elements that

represent actions that have already happened. As an example, we

consider the automation of laboratory workflows where failures of

low-level jobs may need to get compensated by taking out samples

from the automated process. Based on this scenario, we present

a benchmark for transformation tools to deal with such kind of

problems.

CCS CONCEPTS

• Software and its engineering → Object oriented frame-

works; Specialized application languages; API languages.

KEYWORDS

incremental, model-driven, transformation

1 INTRODUCTION

When the pandemic situation due to Covid-19 started in spring 2020,

the availability of test capacities was a huge problem and is still a

critical problem when the paper was written. As one of the reasons,

this is due to the fact that workflows executed in laboratories are

usually automated in an inflexible manner or not automated at all.

In the latter case, this was often not due to the fact that laboratories

were lacking instruments capable of automating a workflow such

as Covid-19 tests, but rather to the fact that it was hard to repurpose

these instruments for Covid-19 tests, besides to verification and

validation efforts also due to the lack of flexibility of the control

software for such instruments.

These instruments are often robotic liquid handlers (RLHs) equipped

with some additional devices such as thermocyclers, shakers or

readers. These RLHs come either tied and optimized for a set of

specific applications (especially clinical applications) or as flexible

instruments that can solve various tasks. An example of the latter

is the Fluent instrument from Tecan
1
. These instruments currently

offer the end-user a domain-specific language to create and manage

programs that can be executed by the robot, in the case of Fluent

called scripts. This domain-specific language is modular, such that it

can be extended by certain elements, e.g. to support the integration

of third-party devices that can perform subtasks such as shaking

or heating a plate.

The general problemwith scripting is that the level of abstraction

provided to the user, which usually is a chemist or biologist but not

typically not a computer scientist, is often rather low. This makes it

1
https://lifesciences.tecan.com/fluent-laboratory-automation-workstation

hardly accessible, unless users get a substantial amount of training.

Furthermore, it is very hard for these low-level descriptions to cope

withmultiple scales, such as multiple supported amounts of samples

processed by the robot at a time. To overcome this problem, there

are several approaches to raise the level of abstraction in which the

laboratory workflow is formulated and how it is transformed to

low-level jobs executable by the robot.

When following such an approach, one quickly runs into prob-

lems that when errors occur, such as e.g. consumables or reagents

run empty during the process. Errors usually occur at the lower

levels of abstraction such as e.g., the hardware, and it is up to the

automation system to translate this error into the high-level work-

flow description by tracing back into the high-level description of

the process.

RLHs are expected to recover from errors whenever possible, e.g.

by asking the user to refill the consumables and continue. Depend-

ing on the process, there may be implications on the process, for

example because time constraints can no longer be met. In these

situations, multiple options exist, depending on both the error and

its context. If viable, a solution can be to just retry or to flag the

sample that time constraints could not be met. Depending on the

length of the pause and the process, this can already mean that

the results for these samples are not usable, e.g. because reagents

evaporated while the users was refilling consumables. In such cases,

one would want to simply skip the processing for the affected sam-

ples in order to save consumables and reagents or one wants to

abort processing for the samples not yet processed in order to save

the sample. Another example are redundant devices that run into

failures and one would like to use a different device instead.

Therefore, the automation system needs to do two things, one

is to identify the required changes to the high-level process and

the second one is to propagate these changes to low-level elements.

However, since the error occured while the workflowwas executing,

some elements of the low-level model cannot be changed anymore

since represent actions performed in the past. It is impossible to

undo what the instrument has already done, but it is possible to

change what the instrument shall be doing next. Because time

constraints are in operation while these changes are propagated, it

is also important that the replanning happens fast.

Given the recent advances in incremental model transformation

and analysis, we believe a viable solution approach would to design

the transformation from the high-level process model to low-level

execution jobs as an incremental transformation. Ideally, the in-

crementalization is done implicitly, i.e. without the transformation

developer having to adopt the transformation, to support a wide

range of changes in the process model. When the transformation

would create jobs, it would create them with an initial execution

state and then restrict the change propagation to those elements

that are still in initial state.

1

https://lifesciences.tecan.com/fluent-laboratory-automation-workstation

Georg Hinkel

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Another way to look at the problem is to understand it as a

consistency problem: For each sample and for each part of the input

process, there must be a corresponding low-level action element.

When such a low-level element fails, the corresponding sample

would fail (if there is no alternative recovery). Setting the sample

to a failed state would let the consistency mechanism remove all

the low-level elements that have not been executed yet, ideally

reporting those that have been executed as inconsistencies (because

they would not have been necessary given that the processing of

the corresponding sample failed).

For a practitioner, it is not clear to us which incremental trans-

formation approaches are capable of specifying such constraints,

i.e. that change propagation of some elements is restricted to some

specific states. Therefore, this paper presents a transformation chal-

lenge and benchmark how such change propagation systems can

be specified and executed in an incremental manner.

The remainder of this paper presents a tool challenge to solve a

minimized version of this problem. At first, we describe the chal-

lenges that we see in this case in Section 2. Section 3 then describes

the case itself. Section 4 introduces the benchmark framework and

Section 5 briefly explains the reference solution and its deficits.

2 CHALLENGES

In particular, the following aspects of the problem are especially

important:

• Because the transformation from high-level process models

to low-level execution jobs happens at runtime, the per-

formance of this transformation is important. However, it

is sufficient when the jobs are clear when they have to

be executed, i.e. it does not matter if the planning is not

finished for the entire jobs as long as it is clear what the

instrument shall be doing next. How long does it take for the
transformation to return the first low-level element?

• If a job fails, one needs to identify how the process model

needs to be adapted.How to specify this in an understandable
way?

• Given a change of the process model, one needs to adjust

the jobs that need to be performed as quick as possible. How
long does it take?

• While propagating changes to the low-level jobs, it is tremen-

dously important that the jobs that have been executed

already stay in place. How to make sure that the change
propagation does not affect elements representing actions that
have happened in the past?

• Ideally, the transformation from the abstract process model

to the low-level jobswould not have to altered.What changes
are necessary to enable an incremental change propagation?

We ask all authors of solutions to comment on how their tool

copes with the challenges described above.

3 CASE DESCRIPTION

The benchmark uses two metamodels. The first is a high-level

description of laboratory workflows, the second one is a low-level

description of liquid handling jobs. In the scope of the benchmark,

we omit all layers below the specification of what an arm should

do and we also removed the scheduling problem. Therefore, the

transformation is limited to calculate what the RLH has to do, but

not when or where.
In the remainder of this section, we present these two metamod-

els in Sections 3.1 and 3.2. Then, we discuss the transformation

rules in Section 3.3 and the change propagation rules in Section 3.4.

3.1 The high-level laboratory process

metamodel

The minimized metamodel of laboratory workflows that we use

for the benchmark is shown in Figure 1. The central element is a

JobReqest that represents to process a range of samples using

a given Assay. This assay element represents the actual process.

Meanwhile true laboratory workflows often consist of a vast variety

of operations, the benchmark only considers four possible process

steps, namely distributing sample, adding a reagent, washing or

incubating. Each protocol step has an id for the sake of identifying it

in the remainder. Further, protocol steps carry links to their previous

and next steps in order to ease analysis. Meanwhile most workflows

require the replication of samples and also need to include standards

such as positive and negative controls, this is also omitted in this

simplified model.

Samples are identified by a sample id, which is usually the bar-

code on the sample. Assays have a name assigned to them. In Figure

1, they are contained in a JobReqest to make it easier to work

with them, though in practice they usually stand for themselves.

3.2 The low-level job metamodel

The low-level metamodel has a viewpoint that is more concerned

with the actual execution of the workflow on a RLH. Here, the exe-

cution of the entire process is represented by a JobCollection that

consist of a series of Job elements. These could be LiqidTransfer,

Wash or Incubate elements.

Each LiqidTransfer element represents the execution of a

liquid transfer command in the RLH. Because RLHs are usually

equipped with multiple pipettes, the RLH can pipette multiple cavi-

ties of a microplate or tube rack at once. Therefore, a LiqidTrans-

fer element has up to eight TipLiqidTransfer elements that

specify which wells the individual tips of the transfer operation

should target. It is important that the pipettes of a pipettor usually

share the X axis, which means that all source cavity indices of

TipLiqidTransfer elements inside a LiqidTransfer elements

may only differ by their remainder in the division by 8. Similarly,

all target cavity indices must be the same except for the modulo

8. That is, it is allowed to pipette cavity indices 0 and 1 inside the

same element, but not 0 and 8. Liquid can be transferred from and

to any kind of labware.

We assume here that a separate device is used for washing that

only works with microplates, but washes cavities separately. There-

fore, a Wash element carries a list of all cavity indices that should

be washed and a reference to the plate that should be washed.

Similarly, an Incubate steps works only for microplates, but it

always incubates an entire plate, because it is physically difficult to

heat only parts of it.

2

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Incremental Recompilation of Laboratory Workflows

Figure 1: Minimized metamodel of laboratory workflows.

Figure 2: Minimized metamodel of liquid handling jobs

3.3 Transformation Rules

The transformation from the high-level process model to the low-

level job model needs to follow these requirements:

• For each JobReqest, a JobCollection should be created.

• Samples are processed on microplates but come in tubes

stored on racks with 16 tubes called tube runners. There-

fore, for each Sample, a cavity of a TubeRunner should be

assigned. Further, the transformation needs to store a map-

ping between a Sample and a combination of a Microplate

and a cavity index. The combination of microplate and cav-

ity needs to be unique. At most 96 cavities of a microplate

can be used. In order for tracing, the microplates should

be simply numbered with a common prefix. The first mi-

croplate should be named Microplate1 and so on and so

forth.

• We assume that reagents are stored in troughs. Therefore,

for each Reagent element, there should be a Trough ele-

ment with the name set to the name of the reagent.

• For each combination of ProtocolStep and Sample that

is not in the Error state, a Job needs to be added to the

3

Georg Hinkel

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JobCollection corresponding to the parent JobReqest

of the parent Assay as defined per the following rules:

– For each DistributeSample element, there must be

a TipLiqidTransfer that represents the transfer of

the sample from cavity 0 of the tube containing the

sample to the cavity of the assigned microplate. Multi-

ple TipLiqidTransfer elements may share the same

parent LiqidTransfer element.

– For eachAddReagent element, theremust be a TipLiq-

uidTransfer that represents the transfer of reagent

to the cavity with the sample, i.e. from cavity 0 of

the trough created for the reagent to the cavity and

microplate assigned to the sample. Again, multiple

TipLiqidTransfer elements may share a parent Liq-

uidTransfer element if the conditions regarding the

cavity indices are met.

– For each Wash, a WashJob should be created that

washes the microplate assigned to the sample and at

least the cavity index of the sample. However, the same

WashJob may be reused for multiple samples provided

that the transformation assigns the samples to the

same microplate.

– For each Incubate, an IncubateJob with the same

temperature and duration should be created that incu-

bates the microplate assigned to the sample. The same

IncubateJob must be reused for the incubation of the

same microplate, provided that the transformation as-

signs them to the same microplate.

– Each created job must have the name of the protocol

step from which it was created.

– Each created job must reference jobs created for the

previous protocol step for the same samples such that

the job is scheduled afterwards.

• The transformation should ideally produce the minimum

amount of elements, i.e. the LiqidTransferJob, WashJob

and IncubateJob elements should be shared where this is

possible.

3.4 Change Propagation Rules

As denoted earlier, there are two change propagations in the bench-

mark. One is to change the high-level model as reaction to low-level

changes and the other change propagation is in the direction vice

versa.

The first change propagation will be very simple in the scope of

this benchmark.Whenever a Job is failed, all corresponding samples

have to change their state to failed as well. If a LiqidTransfer-

Job fails, only those samples using the failed TipLiqidTransfer

elements have to be set to failed.

The more interesting change propagation is the change propa-

gation in the opposite direction. In the scope of the benchmark, we

only consider changes to the state of samples. If a sample changes

its state to failed (e.g. as a consequence of a change propagation

from the lower level), all jobs created for this sample need to be

removed, provided that they are still only planned and no other

samples are affected. That is, a WashJob or IncubateJob may only

be removed if all samples on the corresponding plate are failed.

4 BENCHMARK

We provide a benchmark framework that can automatically compile,

run and check solutions and generate diagrams to analyze the

results. The benchmark framework with the metamodels, input

models, the reference solution are publicly available online at https:

//github.com/tecan/ttc21incrementalLabWorkflows.

In the remainder of this section, we first describe the phases of

the benchmark in Section 4.1, then explain how to run it in Section

4.2. Next, we introduce the input models in Section 4.3. Section 4.4

explains the correctness checks and Section 4.5 introduces the eval-

uation criteria for solutions. Section 4.6 then explains the procedure

to add a solution to the benchmark.

4.1 Phases

The benchmark is divided into the following phases:

(1) Initialization: Loading the transformation and metamod-

els

(2) Load: Loading the input models

(3) Initial: Creating the initial JobCollection

(4) Update: Reading changes to job executions and propagate

The last step is performed repeatedly 20 times. The benchmark

seeks to compare execution times for all of the phases. For the last

step, any efforts necessary for parsing and loading the changes can

be excluded from the time measurements.

4.2 Running the benchmark

The benchmark framework only requires Python 2.7 or above and R

to be installed. R is required to create diagrams for the benchmark re-

sults. Furthermore, the solutions may imply additional frameworks.

We would ask solution authors to explicitly note dependencies to

additional frameworks necessary to run their solutions.

If all prerequisits are fulfilled, the benchmark can be run using

Python with the command python scripts/run.py. Additional
command-line options can be queried using the option –help.

1 {
2 "Tools": ["Reference"],
3 "Scenarios": [
4 {
5 "Name": "test",
6 "Models": ["minimal"]
7 }],
8 "Sequences": 20,
9 "Runs": 5,
10 "Timeout": 6000
11 }

Listing 1: A minimal benchmark configuration

The benchmark framework can be configured using JSON con-

figuration files. A minimal test configuration is depicted in Listing 1.

When creating a new solution, we highly recommend to overwrite

the contents of this configuration file locally. In the configuration

from Listing 1, only the test scenario with just one minimal model

is executed, using only the solution in Reference 5 times.

4.3 Input Models

As inputs, we use models of a very abstract Elisa (Enzyme-linked

Immunosorbent Assay) workflows. These workflows are generally

used to detect antibodies, for example to proof that a patient has

experienced a Covid-19 infection or has been vaccinated. For this,

4

https://github.com/tecan/ttc21incrementalLabWorkflows
https://github.com/tecan/ttc21incrementalLabWorkflows

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Incremental Recompilation of Laboratory Workflows

we assume that we have access to microplates that are already

prepared with Covid antigens at the bottom of the wells. Then,

we add the sample. After an incubation period, antibodies against

Covid-19 in the sample, if any, will bind to the antigens at the

bottom of the well. Then, the plate is washed (in order to get rid of

other antibodies) and a conjugate is added. In a second incubation

step, special marked antibodies bind to the Covid-19 antibodies,

if any. Afterwards, the plate is washed again and a substrate is

added that reacts with the marked antibodies and, after another

incubation period, results in a color reaction.

Figure 3: Example result of an Elisa process

The result is a plate where some cavities are colored while others

are not, as illustrated in Figure 3. Such a plate can be read by

an absorbance reader, which the limited process model does not

support. In such an image, the color correlates with the amount of

antibodies present in the sample.

In the scope of the benchmark, we always use the same assay, but

vary the number of samples or work with duplicates of the assay.

That is, the benchmark has a sequence of models with increasing

number of samples but the same assay or an increasing number of

steps in the assay (by replicating the steps) and a constant number

of samples.

To specify changes in the low-level job model, we use text files

that specify these jobs in terms of the high-level model. Each line of

these text files corresponds to one state change of one job. The lines

are in the format <ProtocolStepName>_<Plate>_<State> where

state is either S for success or F for a failure (we skip the executing

state). These status lines have been generated independently from

an actual solution and thus, they include also status changes of

jobs for samples that would have to be set to a failed state due to a

previous failure. In case of a liquid transfer, there are 96 states, indi-

cating the success state for each cavity, independently of whether

this cavity is used or not.

However, changes may also affect the samples, i.e. new samples

may be added dynamically. This is indicated by a line in the format

NewSample_<SampleId>.
As stated above, the time needed to calculate the job elements

that are actually affected by these changes should be excluded from

the time measurements, but the actual change propagation should

be included.

The high-level process models are available in EMF format, but

can be made available in other formats as well, upon request.

4.4 Correctness Checks

The benchmark framework performs the following correctness

checks after the initial transformation and after each update:

• It checks that only the step names of input model elements

are used.

• It checks that no liquid transfer is made into the same cavity

of the same labware and the same protocol name.

• It checks that no cavity index greater or equal to 96 is used.

• For the initial execution, the requirement that only the min-

imal amount of jobs are used is a must and the benchmark

framework checks the number of elements.

4.5 Evaluation Criteria

The solutions are evaluated along the following criteria:

• Understandability

• Conciseness

• Number of elements in the low-level model

• Execution time

The understandability of the solutions will be evaluated by a

poll during the TTC event. To evaluate the conciseness, we ask

every solution to note on the lines of code of their solution. This

shall include the model views and glue code to actually run the

benchmark. Code to convert the change sequence can be excluded.

For any graphical part of the specification, we ask to count the lines

of code in a HUTN
2
notation of the underlying model.

The number of elements is collected from the check application

and does not have to be calculated by the solutions.

4.6 Solution Requirements

The solutions are required to perform the steps of the benchmark

in the order depicted above. Solutions must report the following

metrics between these steps, in case of the update phase after every

change sequence. The reporting is done by printing the following

separated by ; to the standard output:

• Tool: The name of the tool.

• Scenario: The scenario of the models (i.e. scaling samples

or assay steps)

• Model: The name of the input model set that is currently

run

• RunIndex: The run index in case the benchmark is re-

peated

• Iteration: The iteration (only required for the Update phase)

• PhaseName: The phase of the benchmark

• MetricName: The name of the reported metric

• MetricValue: The value of the reported metric

Tool, Scenario, Model and RunIndex are provided to the solution

using environment variables with the same name. Further, the

benchmark framework passes the root directory of the models

2
https://www.omg.org/spec/HUTN/

5

https://www.omg.org/spec/HUTN/

Georg Hinkel

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

using the variable ModelPath and the number of update iterations

using Sequences.
Solutions should report on the runtime of the respective phase in

integer nanoseconds (Time) and theworking set in bytes (Memory).

The memory measurement is optional. If it is done, it should report

on the used memory after the given phase (or iteration of the update

phase) is completed. Solutions are allowed to perform a garbage

collection before memory measurement that does not have to be

taken into account into the times. In the update phase, we are not

interested in the time to parse and identify the changes, but only

the pure change propagation.

To enable automatic execution by the benchmark framework,

solutions should add a subdirectory to the solutions folder of the

benchmark with a solution.ini file stating how the solution should

be built and how it should be run. Because the solution contains

the already compiled reference solution, no action is required for

build. However, other solutions may want to run build tools like

maven in this case to ensure the benchmark runs with the latest

version.

The repetition of executions as defined in the benchmark con-

figuration is done by the benchmark. This means, for 5 runs, the

specified command-line will be called 5 times, passing any required

information such as the model that should be computed, the run

index, etc. in separate environment variables. All runs should all

have the same prerequisites. In particular, solutions must not save

intermediate data between different runs. Meanwhile, all iterations

of the Update phase are executed in the same process and solutions

are allowed (and encouraged) to save any intermediate computation

results they like, as long as the results are correct after each change

sequence.

5 REFERENCE SOLUTION

The repository also contains a reference implementation that mim-

ics how this kind of functionality would be implemented using

standard object-oriented code. That is, it uses NMF [1] for the

model representation but processes the models using the generated

model API using only functionality offered by the .NET Framework.

For this, we extended the model classes with a separate interface

as needed for the transformation and created separated dedicated

interfaces for tracing, which is done manually.

The following trace links are created:

• For each sample, we store the tube runner and the tube

index where the sample comes into the system and the

microplate and cavity where it is processed. These trace

links are created in both directions, such that we can also

trace a microplate cavity back to a sample.

• For each job, we trace which samples it processes, both

forwards and backwards, such that we can identify the jobs

for a sample and the samples processed by a job.

• For each reagent, we trace the trough in which the reagent

is placed.

Essentially, the reference solution calculates the required jobs for

a number of input samples separately through queries. As an exam-

ple, the query for creating the liquid transfers for a AddReagent

element is depicted in Listing 2.

1 from sample in samples
2 let location = locationRepository.LocateSampleProcessing(sample)
3 group (sample , location) by (location.Plate , location.Cavity / 8)

into transferChunk
4 select TraceAll(AddTips(new LiquidTransferJob
5 {
6 ProtocolStepName = Id,
7 Source = locationRepository.LocateReagent(Reagent),
8 Target = transferChunk.Key.Plate
9 }, transferChunk.Select(l => l.location.Cavity)),
10 trace , transferChunk.Select(g => g.sample));

Listing 2: Generating

the liquid transfers for an AddReagent in the reference

solution.

1 Tips.Where(t => t.Status == JobStatus.Failed)
2 .Select(tip => locationRepository.IdentifySample(Target , tip

.TargetCavityIndex))
3 .Where(s => s != null);

Listing 3: Calculating failed samples for a

LiqidTransferJob

1 foreach(var sample in failedSamples.Distinct ()) {
2 sample.State = SampleState.Error;
3 foreach(var job in _affectedJobsPerSample[sample]) {
4 if (job.State == JobStatus.Planned) {
5 job.GetProcessedSamples ().Remove(sample);
6 if(job.GetProcessedSamples ().Count == 0) {
7 job.Delete ();
8 }
9 else if(job is LiquidTransferJob liquidTransfer) {
10 var processingLocation = _locationRepository.

LocateSampleProcessing(sample);
11 var tip = liquidTransfer.Tips.FirstOrDefault(t => t.

TargetCavityIndex == processingLocation.Cavity);
12 tip?. Delete ();
13 }
14 }
15 }
16 }

Listing 4: Change propagation implementation of the

reference solution

In this listing, we first obtain the processing location for each

sample, group them by plate and row and create a liquid transfer

job for each group, adding the tip indices and trace links in separate

methods not shown in the listing. Similar queries exist also for the

other high-level elements.

When changes of the high-level process model need to be prop-

agated, the solution calculates the samples that are affected by the

failures following the trace links. For LiqidTransferJobs, this is

depicted in Listing 3.

Once the failed samples are identified, the reference solution

removes the trace link to jobs. If a job or tip transfer does not have

a referenced sample any more, it gets deleted. This is depicted in

Listing 4.

We believe that the usage of the query syntaxmakes the reference

solution actually not too bad from a readability perspective and

given the fact that it is implemented in plain C#, we assume it also

has a good performance. Still, the reference solution has multiple

problems:

• The high-level process model elements have an explicit

knowledge about their transformation to low-level job ele-

ments and in the other direction, the low-level job elements

6

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Incremental Recompilation of Laboratory Workflows

have an explicit knowledge about which samples they are

processing. This is good enough for a quick solution, but

normally undesirable as the high-level model is also used

in other contexts such as an editor.

• Because the tracing is done manually, it is only done on se-

lected points. If the transformation becomes more complex,

this leads to additional overhead as more trace links will

become necessary.

• The change propagation is done manually, which means

that only selected types of changes are actually supported.

However, it is very difficult to exclude certain types of

changes because there is usually still some scenario in

which every part of the input changes. For example, in

the scope of the benchmark, we considered the assay steps

constant, but these may also change when some parts of

the analysis could still be performed even if other parts are

no longer possible (e.g. because reagents have run empty).

• The change propagation rules are repetitive and duplicated

while ideally, they could all be summarized in the fact that

Job elements should only be present either if they have

already started or as long as any of the samples they process

is not failed. In the reference solution, this abstract problem

is encoded for each element separately and both for the

high-level and the low-level model elements separately,

leading to a threat of inconsistency problems.

Given the advances in model transformation, especially in incre-

mental change propagation, we think that the problem could be

solved in a better way.

REFERENCES

[1] Georg Hinkel. 2018. NMF: A Multi-platform Modeling Framework. In Theory and
Practice of Model Transformation, Arend Rensink and Jesús Sánchez Cuadrado

(Eds.). Springer International Publishing, Cham, 184–194.

7

	Abstract
	1 Introduction
	2 Challenges
	3 Case Description
	3.1 The high-level laboratory process metamodel
	3.2 The low-level job metamodel
	3.3 Transformation Rules
	3.4 Change Propagation Rules

	4 Benchmark
	4.1 Phases
	4.2 Running the benchmark
	4.3 Input Models
	4.4 Correctness Checks
	4.5 Evaluation Criteria
	4.6 Solution Requirements

	5 Reference Solution
	References

