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Abstract

This paper presents a solution to the roundtrip engineering case at the
Transformation Tool Contest (TTC) 2020. I demonstrate how syn-
chronization blocks can be easily used to specify the relationships in a
bidirectional manner. Through a superimposition concept, the migra-
tions can concentrate on the parts of the metamodel that have actually
changed.

1 Introduction
Same as every software artifact, metamodels are subject to evolution. However, in large entities, metamodel
change do not take place immediately but rather, one has to accept a period where both the old and the new
schema version are used throughout the organization. During this period, changes can occur either in the new
or in the old form of a model, which leads to a problem that both the model has to be maintained both in the
new and in the old schema.

In the TTC 2020 Roundtrip benchmark [1], the task was to solve to synchronize instances of evolving meta-
models in a range of minimal example evolution scenarios.

In this paper, I present a solution to this benchmark using synchronization blocks and their implementation
in NMF Synchronizations [2]. NMF Synchronizations allows us to create very declarative and fully bidirectional
specifications of commonalities between two versions of a metamodel. Further, because NMF Synchronizations
is implemented as an internal DSL, it allows to shorten the specification of commonalities such that developers
of roundtrip migrations can focus on the actual differences between two versions of a metamodel. The solution
is available on GitHub: https://github.com/georghinkel/ttc2020-roundtrips.

2 Synchronization Blocks and NMF Synchronizations
Synchronization blocks are a formal tool to run model transformations in an incremental (and bidirectional) way
[2]. They combine a slightly modified notion of lenses [3] with incrementalization systems. Model properties and
methods are considered morphisms between objects of a category that are set-theoretic products of a type (a set
of instances) and a global state space Ω.

A (well-behaved) in-model lens l : A ↪→ B between types A and B consists of a side-effect free Get morphism
l ↗∈Mor(A,B) (that does not change the global state) and a morphism l ↘∈Mor(A×B,A) called the Put
function that satisfy the following conditions for all a ∈ A, b ∈ B and ω ∈ Ω:

l↘ (a, l↗ (a)) = (a, ω)

l↗ (l↘ (a, b, ω)) = (b, ω̃) for some ω̃ ∈ Ω.
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The first condition is a direct translation of the original PutGet law. Meanwhile, the second line is a bit
weaker than the original GetPut because the global state may have changed. In particular, we allow the Put
function to change the global state.

A (single-valued) synchronization block S is an octuple (A,B,C,D,ΦA−C ,ΦB−D, f, g) that declares a syn-
chronization action given a pair (a, c) ∈ ΦA−C : A ∼= C of corresponding elements in a base isomor-
phism ΦA−C . For each such a tuple in states (ωL, ωR), the synchronization block specifies that the elements
(f(a, ωL), g ↗ (b, ωR)) ∈ B ×D gained by the lenses f and g are isomorphic with regard to ΦB−D.
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Figure 1: Schematic overview of unidirectional synchronization blocks

A schematic overview of a synchronization block is depicted in Figure 1. The usage of lenses allows this
declarations to be enforced automatically and in both directions. The engine simply computes the value that
the right selector should have and enforces it using the Put operation. Similarly, a multi-valued synchronization
block is a synchronization block where the lenses f and g are typed with collections of B and D, for example
f : A ↪→ B∗ and g : C ↪→ D∗ where stars denote Kleene closures.

Synchronization Blocks have been implemented in NMF Synchronizations, an internal DSL hosted by C# [2],
[4]. For the incrementalization, it uses the extensible incrementalization system NMF Expressions [5]. This DSL
is able to lift the specification of a model transformation/synchronization in three quite orthogonal dimensions:

• Direction: A client may choose between transformation from left to right, right to left or in check-only
mode

• Change Propagation: A client may choose whether changes to the input model should be propagated to
the output model, also vice versa or not at all

• Synchronization: A client may execute the transformation in synchronization mode between a left and a
right model. In that case, the engine finds differences between the models and handles them according to
the given strategy (only add missing elements to either side, also delete superfluous elements on the other
or full duplex synchronization)

This flexibility makes it possible to reuse the specification of a transformation in a broad range of different
use cases. Furthermore, the fact that NMF Synchronizations is an internal language means that a wide range of
advantages from mainstream languages, most notably modularity and tool support, can be inherited [6].

3 Solution
Our solution consists of two parts: At first, I describe the solutions to all four of the scenarios using vanilla NMF
Synchronizations, that is, using explicit coding. Afterwards, I explain the necessary steps to turn this into a
generic solution.

3.1 Specific Solution

The idea of synchronization blocks is to specify the semantic overlap between two metamodels, not their difference.
For scenario 1, this overlap consists of the name, which is still the same, and the overlap that the age can be
computed from the year of birth or vice versa. This is depicted in Listing 1.

1 public class Person2Person : SynchronizationRule<V1Person, V2Person> {
2 public override void DeclareSynchronization() {
3 Synchronize(p => p.Name, p => p.Name);
4 Synchronize(p => p.Age, p => 2020 - p.Ybirth);
5 }
6 public override bool ShouldCorrespond(V1Person left, V2Person right, ISynchronizationContext context) {
7 return left.Name == right.Name;
8 }
9 }



Listing 1: The synchronization block to specify the semantic overlap between the Person classes in scenario 1

In particular, both aspects of the semantic overlap can be specified with just one line of code each. Here, the
calculation of the age from a year of birth (and vice versa which NMF is able to automatically infer) is very
simple because the inversion of a subtraction is already built into NMF. However, NMF also allows to specify
a custom conversion operation and a appropriate lens to put back the value, in case a metamodel evolution
requires more sophisticated adaptions.

As a very simple example, such a conversion is used in scenario 3, because the coalescing operator is not by
default reversible in NMF. The implementation of the custom conversion is shown in Listing 2.

1 public class Person2Person : SynchronizationRule<V1Person, V2Person> {
2 public override void DeclareSynchronization() {
3 Synchronize(p => p.Name, p => Coalesce(p.Name));
4 }
5 }
6 [LensPut(typeof(Scenario3Solution), nameof(CoalesceBack))]
7 public static string Coalesce(string value) {
8 return value ?? "";
9 }

10 public static string CoalesceBack(string value, string coalesced)
11 {
12 return coalesced;
13 }

Listing 2: The synchronization blocks to specify the semantic overlap between the Person classes in scenario 3

In particular, one only needs to annotate a given conversion method with a lens put annotation in order to
tell NMF how to invert this function call.

In order to run these synchronization blocks, I instruct NMF to enforce the consistency relations specified
using synchronization blocks either from left to the right or from the right to the left. In the context of this
solution, left means V1 (because I always noted the V1 type on the left) and right means V2. Migrate and
Migrate back therefore translate to simply calling the transformation with direction left to right forced and right
to left forced. Here, forced means that also null values are propagated.

1 var repository = new ModelRepository();
2 var input = LoadModel<Scenario1.V1.Model.Person>(repository);
3
4 var transformation = new Scenario1Solution();
5 transformation.Initialize();
6
7 Scenario1.V2.Model.Person result = null;
8 // this call is the migrate step
9 transformation.Synchronize(ref input, ref result, SynchronizationDirection.LeftToRightForced, ChangePropagationMode.None);

10 // this call is the migrate back step
11 transformation.Synchronize(ref input, ref result, SynchronizationDirection.RightToLeftForced, ChangePropagationMode.None);
12
13 repository.Save(input, Output);

Listing 3: Running the transformation: Migrate and migrate back

The execution of the synchronization is depicted in Listing 3. I first create a model repository in which I load
the input model (lines 1 and 2), then create and initialize the transformation (lines 4/5). Then, I create a new
and empty variable that I use to hold the migrated V2 model in line 7. In line 9, I force NMF to override this
variable and put the migrated Person model element. Then, I immediately migrate the model back, using the
same pattern. As the last parameter suggests, NMF is also able to obtain an incremental change propagation in
case the models are to be used in-memory, but offline synchronization is also supported (by just disabling the
change propagation).

A new information as in scenario 2 simply can be implemented by not synchronizing this attribute. Multiple
edit operations as in scenario 4 simply means to combine the necessary synchronization blocks.

3.2 Generic Solution

The biggest problem that I see with the specific solution is that the identical parts of the metamodel have to
be specified over and over again. While of course not a problem for very small metamodels such as the ones in
the benchmark, this can become a problem once the idea is applied to big metamodels with hundreds of classes



as one has to create a separate synchronization rule for each metaclass and a synchronization block for every
feature.

1 foreach (var att in oldModelClass.Attributes) {
2 var newAtt = newModelClass.Attributes.FirstOrDefault(a => a.Name == att.Name);
3 if (newAtt != null && att.Type == newAtt.Type && newAtt.LowerBound == att.LowerBound) {
4 // Create Synchronize call
5 var lambda = CreateLambdaFor<TOld>(att);
6 singleAttribute
7 .MakeGenericMethod(lambda.ReturnType)
8 .Invoke(this, new object[] { lambda, CreateLambdaFor<TNew>(newAtt) });
9 }

10 }
11 foreach (var oldReference in oldModelClass.References) {
12 var newReference = newModelClass.References.FirstOrDefault(r => r.Name == oldReference.Name);
13 if (newReference != null && newReference.LowerBound == oldReference.LowerBound) {
14 // Create Synchronize call
15 var oldLambda = CreateLambdaFor<TOld>(oldReference);
16 var newLambda = CreateLambdaFor<TNew>(newReference);
17 var rule = Synchronization.GetSynchronizationRuleForSignature(oldLambda.ReturnType, newLambda.ReturnType);
18 singleReference
19 .MakeGenericMethod(oldLambda.ReturnType, newLambda.ReturnType)
20 .Invoke(this, new object[] { rule, oldLambda, newLambda, null });
21 }
22 }

Listing 4: Generating a synchronization block for each unchanged attribute and reference

The code for generating such synchronization blocks for single-valued attributes and references is depicted
in Listing 4. For brevity, we do not handle inheritance, multi-valued attributes or references and only check
whether an attribute or reference with the same name exists and whether the lower bound is the same (in order
to account for the difference between null values and empty strings in scenario 3).

1 foreach (var oldClass in oldModel.Descendants().OfType<IClass>()) {
2 var newClass = newModel.Descendants().OfType<IClass>().FirstOrDefault(c => c.Name == oldClass.Name);
3 if (newClass != null) {
4 var oldMapping = oldClass.GetExtension<MappedType>();
5 var newMapping = newClass.GetExtension<MappedType>();
6
7 if (oldMapping?.SystemType != null && newMapping?.SystemType != null) {
8 var rule = (SynchronizationRuleBase)Activator.CreateInstance(typeof(MigrationRule<,>).MakeGenericType(oldMapping.

SystemType, newMapping.SystemType));
9 yield return rule;

10 }
11 }
12 }

Listing 5: Generating synchronization rules

What we need to do is to generate synchronization rules to house the generated synchronization blocks. For
this, we simply iterate over the classes of the metamodel and check whethere there is a corresponding class in
the new metamodel.

With these two artifacts, we get a model synchronization that automatically synchronizes all classes and
features that have not changed (meaning that a feature with the same name exists), but we still need to specify
the semantic overlap that is contained in different attributes such as the corespondence between age and year of
birth.

1 public class Scenario4Solution : Migration<V1.Container, V2.Container> {
2 [OverrideRule]
3 public class Person2Person : MigrationRule<V1.IPerson, V2.IPerson> {
4 public override void DeclareSynchronization() {
5 base.DeclareSynchronization();
6 Synchronize(p => p.Age, p => 2020 - p.Ybirth);
7 }
8 }
9 }

Listing 6: Superimposition of the migration for person elements

To do that, we use the superimposition concept that is available in NMF Synchronizations, depicted in Listing
6. That is, we inherit from our new migration class that spawns the synchronization rules to synchronize the
unchanged bits and then superimpose this rule by a more detailed rule that inherits the synchronization of
unchanged attributes and references (line 5) and add the synchronization of the age with the year of birth by
subtracting from 2020.



4 Conclusion
I think that the NMF solution highlights the advantages model transformations based on synchronization blocks
can offer in terms of flexibility. A single specification of consistency relationships between the evolution steps
of a metamodel suffices to transform instances forwards and backwards. Boilerplate rules can be calculated
automatically while the essential differences between two evolution steps (the actual migration) is specified
manually with the full flexibility.

Since the very small example inputs do not allow to perform proper performance analysis, I would like to add
one note with regard to performance. One may think that the generic solution and the reflection it performs
must lead to a slow solution. However, this is not true because NMF under the hood uses the .NET expression
compiler to compile the expressions that are built through reflection. Therefore, the reflection only affects the
initialization of such a transformation, the runtime is completely identical.
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