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ABSTRACT

The communication of web-based services is typically organized
through public APIs which rely on a common data model shared
among all system components. To accommodate new or changing
requirements, a common approach is to plan data model changes
in a backward compatible fashion. While this relieves developers
from an instant migration of the system components including the
data they are operating on, it causes serious maintenance prob-
lems and architectural erosion in the long term. We argue that an
alternative solution to this problem is to use a translation layer
serving as a round-trip migration service which is responsible for
the forth-and-back translation of object-oriented data model in-
stances of different versions. However, the development of such
a round-trip migration service is not yet properly supported by
existing technologies. In this challenge, we focus on the key task
of developing the required migration functions, framing this as a
model transformation problem.
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1 INTRODUCTION
1.1 Context

In web development, the communication of web-based services
is typically organized through public APIs which rely on a com-
mon data model shared among all system components. Over time,
the shared data model must be changed to accommodate new or
changing requirements, and the system components (i.e., services)
including the data they are operating on must be migrated. This
problem, commonly known as API evolution, is a well-known chal-
lenge, in particular for web APIs [28, 33, 34].

Figure 1 illustrates this problem by means of a typical example
of a distributed system exposing a three-tier architecture with a
client, a service and a database layer. The API and its underlying
data model are evolved from version 1 (red, not striped) to version
2 (green, striped), which may lead to different architectural evolu-
tion scenarios, depending on the temporal order of updating the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

TTC@STAF, 2020, Bergen, Norway

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Jens von Pilgrim
HAW Hamburg
Hamburg, Germany

Timo Kehrer
Humboldt-Universitit zu Berlin
Berlin, Germany

involved components. Ideally, all components are updated simul-
taneously (scenario @). When performed in an online fashion, we
need a translation layer (TL) to migrate the existing data using tools
such as Liquibase [22]. Once the migration has been performed,
components relying on version 1 of the data model are replaced by
their updated successor versions.

In practice, however, not all the affected components can be mi-
grated instantly and at the same time [6]. A common workaround
is to plan data model changes in a backward compatible fashion.
However, this severely hampers flexibility when evolving the data
model, and essentially comes at the cost of architectural erosion,
increased maintenance efforts and technical debt [31]. A more flex-
ible solution would be to operate components relying on different
data model versions at the same time and to use a translation layer
serving as round-trip migration service being responsible for the
forth-and-back translation of object-oriented data model instances
of different versions. The evolution scenarios @, ® and @ use such
a round-trip migration service to migrate and migrate back shared
data model instances on demand. Architecturally, this allows for
greater flexibility than the aforementioned solutions. It leaves open
a wide variety of design decisions, regarding the use of different
data model versions as well as the location of the translation layer
(client-side, server-side, in the database system, in client-libraries,
etc.).

1.2 Research Gap

Although it seems to be an attractive solution to deal with data
model evolution, the development of a round-trip migration layer
which is responsible for the the forth-and-back translation of object-
oriented data model instances of different versions is not yet prop-
erly supported by existing technologies.

Figure 1: An example of a distributed system. The API and
its underlying data model are evolved from version 1 (red,
not striped) to version 2 (green, striped). In the architectural
evolution scenarios @, ® and O, data model evolution is sup-
ported through round-trip migrating data translation lay-
ers.


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TTC@STAF, 2020, Bergen, Norway

Frameworks such as Google’s Protocol Buffers!, Apache Thrift?
or Apache Avro® support versioning of the whole API and provide
annotations in order to change an API in a backwards compatible
way. On a more fine-grained level, Upgrade]J [2] extends Java to
support versioned type declarations. It allows for upgrading to
new versions dynamically at run-time, however, the revised class
must have at least the fields and method signatures as the original
one. Dmitriev et al. [5] discuss evolution techniques for the PJama
persistence framework. Programmers can write migration functions
which are embedded by means of static methods. However, there is
no dedicated support for implementing round-trip migrations.

Traditional research on data model evolution and instance mi-
gration has its roots in the database systems community. Here,
schema evolution generally refers to the process of facilitating the
modification of a database schema without loss of existing data or
compromising data integrity [24]. The main aim, however, is to
merely update instance data in response to schema changes, which
inherently differs from round-trip migrating instances between
different versions of an APL

The same limitation applies to more recent work in model-driven
engineering. Here, multiple approaches have been proposed ad-
dressing the migration of instance models in response to meta-
model changes, referred to as meta-model evolution and model co-
evolution [10]. Their goal, however, similar to schema evolution,
is to merely update instance models in response to meta-model
evolution. Nonetheless, we feel that a multitude of techniques that
have been proposed in the context of model evolution and model
transformation may serve as a proper basis for the specification of
round-trip migrations.

1.3 Challenge in a Nutshell

In this challenge, we focus on the key task of developing migration
functions which are needed by a round-trip migration service. We
only consider API changes affecting the shared data model, while
other aspects of API evolution such as signature changes in methods
or endpoints in HTTP are out of scope. Protocol changes (e.g.,
change of message format, authentication, rate limit) as mentioned
in Wang et al. [33] are also not considered here. Finally, we focus
on a single round-trip migration at a time and do not consider
concurrent operations in any way.

We frame the development of migration functions as a transfor-
mation problem that abstracts from technological details. While the
shared data model is typically defined through Web API specifica-
tion languages, we choose a more simple and explicit representation
using an object-oriented modeling approach. Conceptually, we con-
sider object-oriented data models and instances as graphs, serving
as basis for the problem definition which we present more for-
mally in Section 2. Next, in Section 3, we give a set of selected
data model evolution scenarios and the corresponding round-trip
migration tasks which are to be solved within this challenge. In
Section 4, we present criteria for evaluating the submitted solutions.
An evaluation framework which may be used by solution providers
and which comprises a set of experimental subjects is described in

!https://developers.google.com/protocol-buffers
Zhttps://thrift.apache.org
3https://avro.apache.org
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Section 5. Finally, Section 6 presents a simple reference solution,
serving as baseline for more sophisticated solutions based on model
transformation concepts and technologies.

An evaluation framework as well as a reference solution for this
case may be found at https://github.com/Ibeurerkellner/ttc2020.

1.4 Relation to Previous TTC Cases

At the 2017 edition of the Transformation Tool Contest, the “Fami-
lies to Persons Case” [1] has been presented. It models a well-known
bidirectional transformation problem which is closely related to
the underlying problem of our case. However, coming from a more
practical setting, we want to emphasize different aspects. As it will
become apparent from our evolution scenarios presented in Section
3, our background is mostly motivated by the features of modern
web-development languages (e.g., the use of optional fields in Sec-
tion 3.3) as well as the development process of web applications in
general (e.g., our evaluation criterion re-usability in Section 4.4).

2 PROBLEM DEFINITION

In this section, we introduce our conceptual, technology-independent
notion of object-oriented data models and instances, and then
present properties which we would ideally expect from round-trip
migrations.

2.1 Data Models and Instances

Graphs are a natural means to conceptually define object-oriented
data models and instances. For the sake of being compatible with the
majority of available model transformation technologies, our notion
of a graph can be transferred to model representations which are
based on the essential MOF (EMOF) standard being defined by the
OMG*. Specifically, a graph G = (Gy, Gg, sreg, tgtg) consists of
two disjoint sets Gy and Gg containing the nodes and the edges of
the graph, respectively. Every edge represents a directed connection
between two nodes, which are called the source and target nodes
of the edge, formally represented by source and target functions
sreg, tgtg : GE — Gn. Given two graphs G and H, a pair of
functions (fn, fg) with fyy : Gy — Hy and fg : G — HE forms
a graph morphism f : G — H if it maps the nodes and edges
of G to those of H in a structure-preserving way, i.e., Ve € Gg :
In(sreg(e)) = sreu(fe(e) A fn(tgic(e)) = tgta(fE(e)).

An object-oriented data model is conceptually considered as a
distinguished graph referred to as type graph T, while an instance
of this data model is formally treated as an instance graph G typed
over T. Formally, a type graph T = (Tn, Tg, srer, tgtT, I, A) is a spe-
cial graph whose nodes and edges are representing types, and which
comprises the definition of a node type hierarchy I C Tn X Ty,
which must be an acyclic relation, and a set A € Ty identify-
ing abstract node types. The typing relation between instances
and data models may be formalized by a special graph morphism
typeg : G — T relating an instance graph G with its associated
type graph T [3]. The way we handle attributes and attribute dec-
larations follows the definition of attributed graphs given in [11].
The main idea of formalizing node attributes in an instance graph is
to consider them as edges of a special kind referring to data values.

“https://www.omg.org/spec/MOF
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Analogously, attributes declared by node types of a type graph are
represented as special edges referring to data type nodes.

In order to avoid going into any technical details of model trans-
formation approaches yet, we will take an extensional view on data
models. That is, speaking about a data model M, then M refers to
the (infinite) set of data model instances which are properly typed
over M.

2.2 Round-Trip Migration Functions

We differentiate the migration and the modification of instances.
Given two data models M; and M5 with M; # Ma, a total function
f : My — My is considered a migration function from M; to Ma.
Given two instances m; € Mp and my € My, we say that m; is
migrated to my if f(m;) = my. On the contrary, given a single data
model M, a total function ¢ : M — M is considered an instance
modification function. Given two instances m and m’ typed over M,
we say that m is modified to become m’ if ¢(m) = m’.

To allow two components which depend on different data models
to communicate with each other, a translation layer is responsible
for migrating instances forth and back. Formally, a translation layer
is a tuple T = (M1, My, f,g) where M; and M, denote the data
models the layer translates from and to via migration functions
f: My — Mzand g: My — Mj, respectively. Given an instance
my € Mj, we refer to the consecutive application of f and g to
my, i.e., g(f(my)), as the round-trip migration of my via Mj. Like-
wise, since translation layers are supposed to work symmetrically
in either direction, given an instance my € My, f(g(m2)) denotes
the round-trip migration of my via M. The round-trip migration
of an instance m; via My (resp. my via M) is called successful if
g(f(m1)) = my (resp. f(g(mz)) = my). A translation layer T is con-
sidered successfully round-trip-migrating if the following conditions
hold:

Vmy € My :g(f(m)) =m (1)
VY mz € Mz : f(g(mz)) = mp (2

In practice, round-trip migrations as introduced above will barely
happen since, more often than not, a component will not directly
return an instance it just received but rather apply some modifi-
cation to the instance before returning it. Given two data mod-
els My and My, a round-trip migration with modification of an in-
stance my € Mj via My is a consecutive application of functions
gocg o f(ml) = g(ca(f(m1))) where, like above, f and g are mi-
gration functions from M; to M and My to M, respectively, and
c2 : My — My is an instance modification function performing
the modification of the migrated instance f(m;) € Mjz. Due to the
modification of f(mj), the original definition of a successful round-
trip migration is not suitable anymore. The result of migrating back
the modified instance ca(f(m1)) € My is not expected to be the
original instance mj. Intuitively, the result is rather expected to be
a modification c¢1(mj) of instance m; where ¢; : My — M; repre-
sents the corresponding co-modification of ¢z on data model M;.
A translation layer T = (Mj, My, f, g) which handles round-trip
migrations between data models My and Mj is called successfully
round-trip migrating with modification if there are co-modifications
cg : My > Mjand ¢z : Mz — M; such that the following
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conditions hold:

¥V my € My : glea(f(m1))) = c1(m1) 3
VY ma € My : f(c1(g(m2))) = c2(m2) (

™
= =

3 SELECTED EVOLUTION SCENARIOS /
TASKS

In the following sections 3.2 through 3.4, we introduce a selection
of different cases of data model evolution and according round-trip
migration scenarios. Data models and instances are represented
using UML class and object diagram notations, respectively. Each
scenario comprises two versions of a data model that demonstrate
the application of typical edit operations on object-oriented data
models in a minimal context. Each scenario can be interpreted from
two perspectives, i.e., from M; to My, or vice versa. The respective
edit operations which can be observed in both cases are inverse
to each other. We discuss round-trip migrations in both directions,
using the shorthand notations M; — My — M; and Mz — M; —
My , respectively.

For each of these round-trip migration scenarios, the task is to
specify the required migration functions, referred to as migrate and
migrate back in the sequel. That is, each of the four data model
evolution scenarios yields two tasks which we ask to be solved by
solution providers, summing up to a total number of eight tasks for
the entire case. Since all of these tasks are independent from each
other, participants may address a subset of them.

3.1 Create/Delete Field —

TaSk_l_Ml_Mz_Ml and TaSk_l_Mg_Ml_Mz
In this scenario, a new field is added to (removed from) a class of
the data model, as illustrated in Figure 3 (left). We assume this field
to be functionally independent from any other field of the same
class.

As illustrated in Figure 3 (right), in a My — My — M; round-
trip migration, the new field age should be set to some suitable
default value since the original Person instance does not provide a
concrete value for this field. The more complicated case, however, is
the My +— M; +— My round-trip migration since it needs to access
a previous revision of the migrated object during a later stage
in the round-trip migration. Here, the value of field age should
be recovered from the original Person instance. In the context of
traditional bidirectional transformation, this can be considered as a
standard scenario which we use as a warm-up task of our round-trip
migration case.

3.2 Rename Field —
Task_ 2 M; M, M; and Task 2 M, M; M,

In this evolution scenario, the name of a field is changed. The most
simple reason for this kind of change is to improve the wording
in the data model to better reflect the terminology of a domain of
interest. A more challenging change is to slightly update the mean-
ing of a field, as it is the case in our evolution scenario presented
in Figure 2 (left). Here, the field age in Mj is changed to ybirth in
M3y, now capturing a Person’s year of birth instead of its current
age.
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My — My — My My — My — My
:Person :Person

name = "Alice" name = "Alice"
@— @— Cz)—P age = 25 @ )—P
: n : n
Person Person \ erso \ erso

- - name = "Alice" name = "Alice"
name : String name : String 1 age = -1 3
age : Int ( )7 ( )7
:Person LL/ :Person LL/

name = "Alice" name = "Alice"
age = 25

Figure 2: Illustration of the data model evolution scenario “Create/Delete Field” (left) and the corresponding round-trip migra-
tions M; — My — M; and My — M; — M; (right). Requested specifications for the latter are referred to as Task_1_M;_M;_M;
and Task_1_M;_M;_My, respectively.

My — My — M, My — My — M
OE— OR—
:Person :Person

name = "Alice" name = "Alice"
1 > age = 25 ®7 ybirth = 1995 @—
Person Percon \ :Person \ :Person
name = "Alice"

name = "Alice"

name : String name : String birth = 1995 age = 25
age : Int ybirth : Int @— e 4 ®— e 9
& &

:Person :Person
name = "Alice" name = "Alice"
age = 25 ybirth = 1995
Data model evolution —3 migrate —» migrateBack

Figure 3: Illustration of the data model evolution scenario “Rename Field” (left) and the corresponding round-trip migrations
My — My — M; and My — M; — M; (right). Requested specifications for the latter are referred to as Task_2_M;_M;_M; and
Task_2_Mj_M;_My, respectively.

My — My — M, My — My — My
OE— O S—
:Person :Person

name = "Alice" age = 25
age = 25 @7 @7

\ :Person \ :Person
name = "Alice" name = ""
=25 age = 25
:Person LL/ :Person LL/
name = "Alice" age = 25
1 2 age = 25
Person Person
name : String name : String [?]
age : Int age : Int

Omw| @ O
:Person 2 :Person 1

name = "Alice" :Person name = "Alice" :Person

age = 25 \ name = "Alice" age = 25 \ name = "Alice"
age = 25

age = 25

@L @L
:Person :Person
:Person age = :Person / 2;:? ;5
name = "" LL/ name = "" VS

age = 25 age = 25

—>  Instance modificaion

Figure 4: Illustration of the data model evolution scenario “Declare Field Optional/Mandatory” (left) and the corresponding
round-trip migrations M; — M, — M; and My — M; — M, (right). Requested specifications for the latter are referred to as
Task_3_M;_M;_M; and Task_3_Mj;_M;_My, respectively. The lower example round-trip migration demonstrates how to deal
with instance modifications.
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My v My — M,
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:Person
name = "Alice"
age = 25
owner
Person Person :Dog
name : String name : String name = "Bob"
age : Int ybirth : Int age = 2
1 1
owner owner
® ; O’
) O :Person
Do Do
9 9 name = "Alice"
name : String name : String age = 25
age : Int
O owner
1
d :Dog
name = "Bob"
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@
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My +— My — My

&>

:Person

name = "Alice"
ybirth = 1995

owner
®

:Person
name = "Bob"

:Person

name = "Alice"
age = 25

name = "Alice"
ybirth = 1995

owner owner
® ®
:Dog @7 :Dog

:Person
name = "Bob" name = "Bob"
age = -1

name = "Alice"

owner
©

:Dog
name = "Bob"

Figure 5: Illustration of the data model evolution scenario “Multiple Edits” (left) and the corresponding round-trip migrations
M; — My — M; and My — M; — M; (right). Requested specifications for the latter are referred to as Task_4_M;_M;_M; and

Task_4_Mj_M;_Mjy, respectively.

The migration functions which are to be developed for this sce-
nario should account for this semantic change and convert between
proper values of fields age and ybirth. As illustrated in Figure 2
(right), we assume the current date as a basis for the conversions in
both directions. In this case, the change in the semantics of age and
ybirth requires the integration of some user-defined arithmetic
operation during transformation. Purely structural approaches of-
ten lack this feature, even though in our context of Web APIs this
is an important requirement.

3.3 Declare Field Optional/Mandatory —
Task_3_M1_M2_M1 and TaSk_B_Mz_Ml_MZ

In this scenario, the multiplicity of a field is generalized (specialized)
from 1 to 0..1 (0..1 to 1). The former case means that the field is
declared to be optional, as indicated by the notation [?] attached
to field name in M of the data model shown in Figure 4 (left). The
latter case is represented by the default notation used for all other
fields, meaning that the field is a mandatory one.

The key issue here is to deal with potential null-values in Mp
and their corresponding default values in Mj. This is rather straight-
forward in a My — Mz +— M; round-trip migration, as illustrated
in Figure 4. Here, null-values in M, may occur due to a modifica-
tion of the migrated instance, and they should be translated to a
default value in M;. The My — M; — M3 round-trip migration
is more complicated. Here, we have to check whether a default
value has been synthesized during migration or through an explicit
modification. In the former case, as illustrated by the upper right
example shown in Figure 4, a synthesized default value is migrated
back to a null-value. In the latter case, illustrated by the lower
right example shown in Figure 4, the default value is the result of
an explicit modification in M7, which should be migrated back to

a default value instead of a null-value in Ms. This evolution sce-
nario is of special interest to us, since optional fields are a common
pattern used in the design and evolution of Web APIs.

3.4 Multiple Edits —
Task_ 4 M; M, M; and Task_ 4 M, M; M,

In this evolution scenario, we combine two edit operations which
we have already considered before. As we can see in Figure 5 (left),
from an M; to M, perspective, the field age of class Dog has been
deleted, which corresponds to the edit operation considered in the
evolution scenario presented in Section 3.1. At the same time, the
name and semantics of field age of the referenced class Person has
been changed to ybirth, as in the evolution scenario presented in
Section 3.2.

The corresponding My — Mj +— M; and My +— M; — Mj; round-
trip migrations are illustrated in Figure 5 (right). Their specification
can be considered as a combination of the migration functions
required for the evolution scenarios presented in Section 3.2 and
Section 3.1. The main aim of this scenario is to call for solutions
that support some form of re-usability (see Section 4).

4 EVALUATION CRITERIA

To evaluate the quality of the proposed solutions, we give a set
of quality characteristics which we consider to be relevant for the
specification of round-trip migrations. We draw inspirations from
previous work on defining quality attributes of model transfor-
mations [8, 9, 21, 30]. We refine each quality characteristic into
measurable attributes for each of the tasks presented in Section 3.
To obtain concrete measures for their solutions, participants are
kindly invited to use the evaluation framework provided with the
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case resources (see Section 5). This way, some of the measures can
be obtained in a semi-automated manner.

4.1 Expressiveness

A first important and rather obvious quality characteristic is the
expressiveness of the transformation language and system being
used to specify and execute round-trip migrations. Intuitively, the
more data model evolution and according round-trip migration
scenarios are supported, the more expressive is the transformation
approach.

To turn this intuition into a measurable evaluation criterion, we
assess the correctness of each task by providing sets of associated
tests. A test case comprises pairs of instances serving as input and
as expected output of a round-trip migration. For each of the tasks
presented in Section 3, a first test case is derived from the example
presented in that section. A second test case is added in order to
prevent literal encodings of solutions (except for the taks presented
in Section 3.3, which already has two associated test cases. A task
is considered to be solved correctly if it passes all tests.

All tasks are scored by means of the provided test cases. A point
is given for each passing test case, and points are summarized over
all test cases. This means that all tasks are scored evenly between
zero and two points. Zero means the task has not been tackled at all,
one point indicates a partial solution, and two points mean that the
task has been solved and the transformation has been implemented
correctly.

4.2 Comprehensibility

Specifications of migration functions should be comprehensible
in order to be maintainable and to allow for better manual valida-
tion. We acknowledge that such a classification is highly biased
by subjective preferences. Developers being familiar with model
transformation languages such as Henshin or ATL most likely pre-
fer a declarative or declarative-imperative style, while mainstream
web developers will most likely prefer a purely imperative style of
writing migrations.

Nonetheless, our idea of evaluating solutions is to compare their
comprehensibility with that of the provided reference solution (see
Section 6). For each task, the comprehensibility of the reference
solution is scored by one point. Better, equal and worse compre-
hensibility of a submitted solution are acknowledged by by two,
one and zero points, respectively.

There are two options for rating the comprehensibility of so-
lutions. In the offline variant, we will use two distinct groups of
students to evaluate a solution by answering a small survey (mainly
about functionality, similar to [23]). One group of students will
have a background on model transformation languages, while the
other group is supposed to have only (basic) programming skills
(in Java). The second variant is to conduct a live evaluation with
the TTC participants.

4.3 Bidirectionality

Bidirectional transformations (BX) [12] appear to be an attractive
solution to our problem as they support to synthesize migration
functions in both directions from a single specification. Such single
specifications may be symmetric as, e.g., in the case of triple graph
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grammars [26], or asymmetric as, e.g., in the case of putback-based
bidirectional programming [18].

Within this challenge, we do not insist on any particular mecha-
nism for specifying bidirectional transformations, and all mecha-
nisms are ranked equally. All tasks and extension tasks are scored
evenly with zero (no bidirectionality) or one point (support for
bidirectionality).

4.4 Re-usability

As with any other kind of software, re-use mechanisms are an
indispensable means to increase the productivity and quality of
model transformations. To that end, numerous re-use mechanisms
for model transformations have been proposed in the literature, a
survey may be found in [20]. We evaluate re-usability by means
of the “Multiple Edits” evolution scenario presented in Section 3.4
since it subsumes the scenarios presented in sections 3.2 and 3.1.

One possible option is to achieve re-usability by means of delega-
tion. Specifically, when developing migration functions supporting
the round-trip migration of Dog instances, this could be achieved by,
e.g., delegating the migration of the referenced Person instances
to migration functions which have been already defined.

Another possible re-use mechanism could be to abstract from
the concrete data models and to specify the required migration
functions in a generic manner, focusing on the conceptual parts
of the respective edit operations. The generic migration functions
would then be instantiated for the concrete data model used in this
scenario. This is similar to the extraction of core transformation
concepts that generalize over several meta-models [27]. In the con-
text of Web APIs, we see this as a core requirement of a feasible
transformation approach. In our setting, the continuous evolution
of a data model also implies the continuous development of a cor-
responding migration layer. From a software engineering point of
view, a transformation approach should therefore provide support
for re-usability. More specifically, s single change to the data model
should require only one corresponding change to the migration
layer, which implies that existing migration code can be re-used.

We do not insist on any particular re-use mechanism, and all
re-use mechanisms are ranked equally. Support for re-usability
is acknowledged by four points, while no points are given if the
specification has been developed from scratch.

4.5 Performance

Finally, we evaluate the proposed solutions with regards to runtime
performance. While the functional correctness of round-trip migra-
tions is an important step towards a valid solution, the Web API
context also requires efficient solutions. The implementation of a
more complex translation layer would be out of the scope of this
challenge. Therefore, as a limited evaluation of the runtime charac-
teristics of the proposed solutions, we repeatedly run the round-trip
migrations required to support the evaluation scenarios described
in Section 3 for a large number of iterations and measure their
execution time. In general however, we consider runtime perfor-
mance a secondary evaluation criterion. Hence, differences among
proposed solutions with regards to runtime performance shall only
serve as a tie-breaker among solutions which score equally for the
other four criteria.
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Figure 6: Evaluation framework architecture (top) and integration of the Java-based reference solution (bottom).

5 EVALUATION FRAMEWORK

General architecture. Tests in our evaluation framework may be
run as JUnit tests. The abstract class AbstractBenchmarkTests
serves as a base class for all concrete tests (see below), doing some
basic initialization. As illustrated by the architectural overview
shown in Figure 6, the class AbstractBenchmarkTests takes the
client role of an implementation of the Abstract Factory design pat-
tern [7], the classes AbstractTaskFactory and AbstractTask are
supposed to encapsulate concrete solutions. That is, for each of the
eight tasks presented in Section 3, solution providers who want
to use our evaluation framework are asked to provide a concrete
subclass of AbstractTask which is to be instantiated by a con-
crete subclass of AbstractTaskFactory. The class AbstractTask
defines the signatures of the two central migration functions called
migrate and migrateBack, respectively. The idea is that migrate
and migrateBack then delegate the actual transformation task to
the model transformation system used in a concrete solution.

Functional tests vs. performance tests. All test cases for assessing
the correctness of each of the eight tasks presented in Section 3 may
be run as JUnit tests which are collected in the Java class called
AllFunctionalTests. Each test method, i.e., task_1_M1_M2_M1()
through task_4_M2_M1_M2(), executes a particular task and checks
whether for a given input models the obtained output model looks
as expected.

A performance test is provided by the class PerformanceTests.
There is only one test method, called testPerformance() which
proceeds as follows: Similarly, to the functional test cases, the test
relies on the correct implementation of the AbstractTaskFactory
and AbstractTask. During performance testing, all test cases pro-
vided for the four evaluation scenarios are executed repeatedly.
That is, a full round-trip migration, involving calls to migrate and

migrateBack is performed. After a certain number of warm-up it-
erations, this test loop is repeated for a total of 2 million repetitions.
The test method measures execution with the increasing number
of repetitions and stores the results into the file results.csv at
the root of the solution’s bundle. See the provided code reposi-
tory of the evaluation framework regarding plotting scripts for the
resulting data.

Registration of a concrete task factory. In order to register a con-
crete subclass of AbstractTaskFactory, solution providers may
use the Eclipse extension point mechanism. Concrete task factories
can be registered through the extension point

de.hub.mse.ttc2020.benchmark.concretetaskfactory.

Please note that, in this case, the classes A1l1FunctionalTests and
PerformanceTests need to be run as JUnit Plug-In Test. Alterna-
tively, solution providers may subclass A11FunctionalTests and
PerformanceTests which can be then run as a normal JUnit test. In
this case, the init method of this concrete subclasses must take care
of instantiating the concrete task factory. Our reference solution
(see Section 6) implements both options for the sake of illustration.

Test data. Finally, since many model transformation tools avail-
able in the model transformation research community are based
on the Eclipse Modeling technology stack, we provide implementa-
tions of the data models used in the evolution scenarios presented
in Section 3 in EMF Ecore. Consequently, instances serving as test
data for assessing the correctness of transformation tasks are rep-
resented as EMF instances (often referred to as instance models in
the EMF community). Checking the equivalence of an actual and
expected round-trip migration result is performed using the model
comparison tool EMF Compare [4].
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Table 1: Evaluation results obtained for the Java-based reference solution. Numbers in brackets indicate the maximum score

that can be achieved.

Expressiveness Comprehensibility Bidirectionality Re-usability

Evolution Scen. “Create/Delete Field”

Task 1_M; My M; 2(2) 1(2) 0(1) n.a.

Task_1_My_M;_M; ) 1(2) 0(1) n.a.
Evolution Scen. “Rename Field”

Task 2 M1 My M; ) 1(2) 0(1) n.a.

Task_2_My_M;_M; ) 1(2) 0(1) n.a.
Evolution Scen. “Declare Field Optional/Mandatory”

Task 3 M1 My M; ) 1(2) 0(1) n.a.

Task_3_My_M;_M; 2(2) 1(2) 0(1) n.a.
Evolution Scen. “Multiple Edits”

Task_4 M; Mz M; 2(2) 1(2) 0(1) 0 (4)

Task_4_My_M;_M; 2(2) 1(2) 0(1) 0(4)

316 (16) 3 8 (16) 3:0(8) 3:0(8)

6 REFERENCE SOLUTION

To provide a reference solution for this case, we implemented all the
migration functions which are required to support the 8 round-trip
migration tasks arising from our four data model evolution scenar-
ios presented in Section 3 in Java. Its integration into the evaluation
framework presented in Section 5 is illustrated in Figure 6 (bottom).
Each task is realized by a concrete subclass of class AbstractTask,
each of which is being instantiated by the concrete task factory
called JavaTaskFactory. None of the migrations is delegated to
a dedicated model transformation system, but the migration func-
tions migrate and migrateBack are directly implemented in Java.

Qualitative evaluation results. Table 1 summarizes the qualitative
evaluation results for for our Java-based reference solution, namely
for the criteria expressiveness, comprehensibility, bidirectionality
and re-usability. On the one hand, it is not surprising that a general
purpose programming language like Java is expressive enough
to correctly solve all the tasks provided with this case. Thus, the
reference solution achieves the maximum score in this category,
i.e., two points per task summarizing to 16 points in total. On the
other hand, bidirectionality and re-usability are not supported at
all.

Performance results. Figure 7 illustrates the runtime character-
istics of our reference solution. These results were obtained on a
Mid-2014 MacBook Pro with an Intel Core i5 processor running at
2,6 GHz and 8 gigabytes of main memory. As expected, the time
consumed to perform the round-trip migrations grows linearly with
the number of iterations. It takes about 40 seconds to perform all
the 2 million iterations of our performance test.

7 SUMMARY AND OUTLOOK

In this paper, we outlined our vision of a so-called translation layer
which supports the communication of web-based services in differ-
ent, incompatible versions. One of the key tasks of implementing

Total Transformation Runtime
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Figure 7: The performance results of our provided reference
solution.

such a translation layer is to support the round-trip migration of in-
stances of object-oriented data models in different versions. In this
challenge description, we phrased this as a model transformation
problem which, in contrast to previous TTC cases on the same topic,
is driven by the needs and specifics of our application context. We
are convinced that modern model transformation technologies such
as Henshin [29], VIATRA [32] or ATL [15] are capable of solving
the challenge in an elegant way. In particular, solutions to the TTC
2017 “Families to Persons Case” [13, 14, 25, 35] may be adapted to
our case with moderate effort.

One of the next steps to further extend this challenge could
be to study more evolution scenarios than the four considered in
this paper. Moreover, we could think of a (semi-)automated specifi-
cation of the required round-trip migration functions. Again, we
are convinced that technologies from the field of model-driven
engineering, notably techniques for model matching [16, 19] and
differencing [17], can serve as starting point for such automation.
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