12t Transformation Tool Contest
TTC 2019 Emdhoven July 19th

Why this transformation?

- Audience feedback from 2018:

- Revisit ATL Zoo transformations (need updating!)
- Research is going beyond "just performance"
- (But that's still important!)

- We considered two transformations:
- RSS to ATOM (reasonably complex metamodels)
- TT to BDD (executable notations)

- TT to BDD seemed more interesting:

- Both source and input metamodels are executable
- Amenable for optimisation and verification problems
- Very graph-oriented

Transformation summary

- We start with a lookup table (with optional inputs)
- We want to produce a decision diagram
- Existing ATL Zoo tx was updated and repackaged

A B C D|S
o 0 - - 10
0O 1 0 0 |1
0O 1 0 0 |1
0 1 0 110
o 1 1 - 1|0
1 0 0 0 0
1 0 1 0 |1
I - 110
1 1 0 0 |1
1 1 1 0|0

Input metamodel

TruthTable (root type):

| B TuthTable - Has Rows
[1.1] owner %’ name : EString [1.1] owner _ HaS |nputP0rtS
- Has OutputPorts
[1.*] ports [2-*] rows
| Be | [Brw | - Rows have Cells
{ name : EString [1.1] port [1.1) owner .
]]* - Cell specifies a Boolean
value for a certain Row
[0..*] cells [1.*] cells
1 OutputPort i InputPort [

{

e

{

slow to run.

l., S] Very simple, executable, but

Output metamodel A: Binary Decision Tree

- BDD (root type):

[0..1]) ownerSubtreeForOne 4 - HaS a Tree
[0..1) ownerSubtreeForZero _ H as |/O po r‘ts

[0..*] subtrees

R IU o - Tree structure:
£ 80D [Bme | [Bur | - Subtree: branch on
% name:EString | [0..1) ownerBDD
[i]tres ' ’ ‘ InputPort value
- Leaf case: have an
[1.1) owner [1.1] owner .
- Assignment of values for
- [1.*] ports [1.1] port [0..*] assignments [1..*] assignments .
| £] nputPort] % Port [£i OutputPort | [] Assignment] the OUtpUtPOI’t InStanCeS

Output metamodel B: Binary Decision Graph

] BDD %] Tree I] Subtree

' name : EString [0.1] ownerBDD [1..1] treeForZero [0..*) ownerSubtreeForZero
- e— A

-~

[1..1] root [1..1) treeForOne [0..*) ownerSubtreeForOne

e
R

-~

[Leaf

For some functions, we could reuse
subtrees if we wanted to produce

! minimal models: therefore, we could
have a binary decision graph!

Concerns for this transformation

Performance
- A bad implementation could quickly increase in cost as we get larger
and larger truth tables
Optimality
- We'd like smaller BDDs if possible
- This is possible by reusing subtrees (graphs)
Correctness
- Going beyond manual testing (formal methods)

Conciseness, usability, understandability...

Tooling for the case

- Generator
- Can produce random tables of arbitrary size
- Limitation: no optional inputs
- Validator
- Runs the truth table and the BDD side-by-side, checking the results

- Dockerfile (new this year!)

- https://hub.docker.com/r/bluezio/ttc2019-tt2bdd-qit

- Executed on Google Cloud Compute

- c2-standard-4 (4 cores, 16GiB RAM) with 50GB SSD

- US Central (lowa)

- Excludes MEEDUSE (does not use benchmark framework)

https://hub.docker.com/r/bluezio/ttc2019-tt2bdd-git

Performance figures

Transformation
1e+06 -+
1e+05
)
g
o 10000
£
I._
1000
100 5 : l
10402 10802 10804 11002 11202 11404 11505
Model
<= ATL =< Fulib ¢ RAG _OBDD - RAG_ROBDD-H %+ RSyncBDT
Tool #= ATLEMFTVMImproved <= NMF - RAG_OBDT +#* RSyncBDD ++ RSyncBDT-Unor

-~ ATLGraph <> RAG _BDT <+ RAG _ROBDD -+ RSyncBDD-Unordered - YAMTL

Time for the presentations!

http://bit.ly/ttc19-1t2bdd

http://bit.ly/ttc19-tt2bdd

