

Why this transformation?

- Audience feedback from 2018:
 - Revisit ATL Zoo transformations (need updating!)
 - Research is going beyond "just performance"
 - (But that's still important!)
- We considered two transformations:
 - RSS to ATOM (reasonably complex metamodels)
 - TT to BDD (executable notations)
- TT to BDD seemed more interesting:
 - Both source and input metamodels are executable
 - Amenable for optimisation and verification problems
 - Very graph-oriented

Transformation summary

- We start with a lookup table (with optional inputs)
- We want to produce a decision diagram
- Existing ATL Zoo tx was updated and repackaged

A	B	C	D	S	
0	0	_	-	0	
0	1	0	0	1	
0	1	0	0	1	$0 \longrightarrow B \longrightarrow 1$
0	1	0	1	0	
0	1	1	-	0	
1	0	0	0	0	S = 0 0 0 0
1	0	1	0	1	
1	-	-	1	0	$0 + (D) - 1 \qquad S = 0 \qquad 0 + (C) - 1$
1	1	0	0	1	S=1 $S=0$ $S=0$
1	1	1	0	0	

Input metamodel

- TruthTable (root type):
 - Has Rows
 - Has InputPorts
 - Has OutputPorts
- Rows have Cells
- Cell specifies a Boolean value for a certain Row

Very simple, executable, but slow to run.

Output metamodel A: Binary Decision Tree

- BDD (root type):
 - Has a Tree
 - Has I/O ports
- Tree structure:
 - Subtree: branch on InputPort value
 - Leaf case: have an
 Assignment of values for the OutputPort instances

Output metamodel B: Binary Decision Graph

Concerns for this transformation

- Performance

 A bad implementation could quickly increase in cost as we get larger and larger truth tables

- Optimality

- We'd like smaller BDDs if possible
- This is possible by reusing subtrees (graphs)

- Correctness

- Going beyond manual testing (formal methods)
- Conciseness, usability, understandability...

Tooling for the case

- Generator

- Can produce random tables of arbitrary size
- Limitation: no optional inputs

- Validator

- Runs the truth table and the BDD side-by-side, checking the results
- Dockerfile (new this year!)
 - https://hub.docker.com/r/bluezio/ttc2019-tt2bdd-git
 - Executed on Google Cloud Compute
 - c2-standard-4 (4 cores, 16GiB RAM) with 50GB SSD
 - US Central (Iowa)
 - Excludes MEEDUSE (does not use benchmark framework)

Performance figures

Time for the presentations!

http://bit.ly/ttc19-tt2bdd