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Why this transformation?

- Audience feedback from 2018:

- Revisit ATL Zoo transformations (need updating!)
- Research is going beyond "just performance"
- (But that's still important!)

- We considered two transformations:
- RSS to ATOM (reasonably complex metamodels)
- TT to BDD (executable notations)

- TT to BDD seemed more interesting:

- Both source and input metamodels are executable
- Amenable for optimisation and verification problems
- Very graph-oriented



Transformation summary

- We start with a lookup table (with optional inputs)
- We want to produce a decision diagram
- Existing ATL Zoo tx was updated and repackaged
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Input metamodel

TruthTable (root type):
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Output metamodel A: Binary Decision Tree

- BDD (root type):
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Output metamodel B: Binary Decision Graph
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For some functions, we could reuse
subtrees if we wanted to produce

! minimal models: therefore, we could
have a binary decision graph!




Concerns for this transformation

Performance
- A bad implementation could quickly increase in cost as we get larger
and larger truth tables
Optimality
- We'd like smaller BDDs if possible
- This is possible by reusing subtrees (graphs)
Correctness
- Going beyond manual testing (formal methods)

Conciseness, usability, understandability...



Tooling for the case

- Generator
- Can produce random tables of arbitrary size
- Limitation: no optional inputs
- Validator
- Runs the truth table and the BDD side-by-side, checking the results

- Dockerfile (new this year!)

- https://hub.docker.com/r/bluezio/ttc2019-tt2bdd-qit

- Executed on Google Cloud Compute

- c2-standard-4 (4 cores, 16GiB RAM) with 50GB SSD

- US Central (lowa)

- Excludes MEEDUSE (does not use benchmark framework)



https://hub.docker.com/r/bluezio/ttc2019-tt2bdd-git

Performance figures
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Time for the presentations!

http://bit.ly/ttc19-1t2bdd



http://bit.ly/ttc19-tt2bdd

