Truth Tables to Binary Decision Diagrams in Modern
ATL

Dennis Wagelaar Théo Le Calvar Frédéric Jouault
Corilus LERIA, Université d’Angers ERIS, ESEO-TECH
Vilvoorde, Belgium Angers, France Angers, France
dennis.wagelaar@corilus.be theo.lecalvar@univ-angers.fr frederic.jouault@eseo.fr
Abstract

Model transformation technology has evolved over the last 15 years,
notably regarding scalability and performance. The Truth Tables to
Binary Decision Diagrams transformation was written for an early ver-
sion of ATL roughly 13 years ago. At that time, performance was not
as much of a concern as it is today. Not only were execution engines
slower then than now, but they also did not provide as many optimiza-
tion opportunities. Consequently, in its original form, this transforma-
tion does not scale well to large models. It remains slow, even when
using EMFTVM, the state of the art ATL virtual machine. In this
work, we show that by leveraging the profiler, and carefully optimiz-
ing the transformation code, significantly improved performance can
be achieved. Our updated solution scales up to the largest generated
model (~ 40 MB), which is transformed in about 23 seconds on a mod-
ern desktop (Ryzen 5 1600X with 16 GB RAM running Fedora 29):
several hundred times faster than the original code.

1 Introduction

This paper presents the ATL/EMFTVM solution to the offline case of the Transformation Tool Contestﬂ 2019:
Truth Tables to Binary Decision Diagrams (TT2BDD)E| [GD19]. This case was developed from an ATL trans-
formation published in the ATL Transformation Zoo [Sav06] roughly 13 years ago in 2006: TT2BDD, a model
transformation initially written for the first ATL virtual machine ever released. Since that time, two generations
of ATL virtual machines have been developed: EMFVM around 2007, and EMFTVME [WTCJ11] from 2011
on.

The resources for the case include the original ATL code from 2006, but run it with EMFTVM. This results in
better performance than using the virtual machine of the time, but does not solve the issues that are in the trans-
formation code. Our updated solutiorﬁ is called ATLEMFTVMImproved, and mostly consists in optimizations
to the transformation code. These optimizations are described in the following section.

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org
Thttps://www.transformation-tool-contest.eu/
2GitHub repository with accompanying resources: https://github.com/TransformationToolContest/ttc2019-tt2bdd
3Documented at https://wiki.eclipse.org/ATL/EMFTVM.
4GitHub repository with our solution: https://github.com/dwagelaar/ttc2019-tt2bdd


https://www.transformation-tool-contest.eu/
https://github.com/TransformationToolContest/ttc2019-tt2bdd
https://wiki.eclipse.org/ATL/EMFTVM
https://github.com/dwagelaar/ttc2019-tt2bdd

2 Optimizations

In order to optimize the TT2BDD transformation, we used the EMFTVM built-in profiler. This lead us to the
three following optimizations:

e Leveraging attribute helpers caching. ATL provides two kinds of helpers: operation helpers, and at-
tribute helpers. Attribute helpers are basically similar to parameter-less operation helpers with a significant
performance-related difference: their result is cached. Therefore, multiple accesses do not result in multiple
computations. The getTree operation helper was thus changed into a tree attribute helper. With a lower
performance impact, the getNode operation helper was also changed into a node attribute helper.

e Applying the object indexing patterrEI. This pattern uses a Map in order to avoid expensive lookups
that can be precomputed. A typical example is the navigation of missing opposite references.

e Leveraging Maps. In the getPartition operation helpers, the original row-accessing code is quadratic: a
use of the exists iterator in the body of a select iterator. We instead compute two Maps: one for each of
the possible true and false values. These Maps are indexed by ports. Moreover, these Maps are computed
in attribute helpers, and are therefore cached and computed only once per context. Because EMFTVM uses
a HashMap to implement Maps, the resulting code is linear.

Another optimization was performed in the transformation launcher: module loading code was moved into
the initialization phase.

3 Conclusion

The state of the art EMFTVM was able to run an old ATL transformation. Although, it cannot automatically
optimize it, its built-in profiler makes it possible to quickly spot performance bottlenecks and fix them by making
relatively simple changes such as turning parameter-less operation helpers into attribute helpers, or applying
well-documented patterns such as the object indexing pattern.

References

[GD19] Antonio Garcia-Dominguez. The TTC 2019 TT2BDD Case (v1.1). In Proceedings of the 12th Trans-
formation Tool Contest. CEUR-WS.org, September 2019. To appear.

[Sav06] Guillaume Savaton. Truth Tables to Binary Decision Diagrams. ATL Transformations, https:
//www.eclipse.org/atl/atlTransformations/#TT2BDD, February 2006. Last accessed on 2019-05-
14. Archived on http://archive.is/HdoHM.

[WTCJ11] Dennis Wagelaar, Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Towards a General Composition
Semantics for Rule-based Model Transformation. In Proceedings of the 14th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS’11, pages 623-637, Berlin,
Heidelberg, 2011. Springer-Verlag.

Shttps://wiki.eclipse.org/ATL/Design_Patterns#Object_indexing


https://www.eclipse.org/atl/atlTransformations/#TT2BDD
https://www.eclipse.org/atl/atlTransformations/#TT2BDD
http://archive.is/HdoHM
https://wiki.eclipse.org/ATL/Design_Patterns#Object_indexing

	Introduction
	Optimizations
	Conclusion

