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Abstract

This paper presents a solution to the Truth Tables to Binary Decision
Diagrams (TT2BDD) case at the Transformation Tool Contest (TTC)
2019. We demonstrate how the implicit incrementalization abilities of
NMF can be used to automatically obtain an incremental algorithm for
the presented case.

1 Introduction
In the past, the need for model transformation languages has often been argued with their improved conciseness
and readability over general-purpose programming languages (GPLs). Recently, however, GPLs have become
more declarative. As an example, pattern matching, an often used language feature, is going to be integrated in
mainstream GPLs such as C#. As a consequence, programming languages tailored to a specific application area
– such as model transformation languages – must prove that they give benefits to the developer that go beyond
just a more concise specification, especially because conciseness does not necessarily imply understandability
or maintainability, at least not throughout language boundaries. After all, using a dedicated model transfor-
mation languages usually comes with a wide range of disadvantages such a (compared to a mainstream GPL)
much smaller community, smaller availability of trained staff, often worse editor support and worse modularity
mechanisms.

The Truth Tables to Binary Decision Diagrams (TT2BDD) case at the TTC 2019 aims to collect the state of
the art in model transformations with regard to what these advantages are in the realm of model transformation
languages and to apply them at a common scenario of converting the specification of a boolean function between
two different formats.

Important examples of such advantages are incrementality and bidirectionality. Here, an incremental model
transformation is a transformation that automatically adapts to changes of its input models. Such a model
transformation is tedious to develop and it is also error-prone as it is easy to forget cases in which the output model
of a transformation needs to be adapted. For model transformations, the trace between input and output model
elements can be used to make an incremental model transformation efficient when new elements are added to the
input model. In a similar fashion, the trace is helpful to invert a model transformations to yield a bidirectional
model transformation. However, it is not obvious how the trace should be used to reach incrementality and
bidirectionality, hence model transformation languages that encode this know how in a language and model
transformation engine do provide a significant benefit over a batch specification of a model transformation
language in a GPL.

One of the model transformation languages that can derive an incremental and/or bidirectional execution from
a batch model transformation specification is NMF Synchronizations [1], [2], an extensible model transformation
and synchronization language and system part of the .NET Modeling Framework (NMF, [3], [4]). This papes
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introduces the solution to the TT2BDD case using NMF, in particular NMF Synchronizations. The code for the
solution is available online1.

The remainder of this paper is structured as follows: Section 2 gives a brief overview on NMF Synchronizations.
Section 3 describes our solution. Section 4 reflects on the solution.

2 Synchronization Blocks and NMF Synchronizations
Synchronization blocks are a formal tool to run model transformations in an incremental (and bidirectional) way
[1]. They combine a slightly modified notion of lenses [5] with incrementalization systems. Model properties and
methods are considered morphisms between objects of a category that are set-theoretic products of a type (a set
of instances) and a global state space Ω.

A (well-behaved) in-model lens l : A ↪→ B between types A and B consists of a side-effect free Get morphism
l ↗∈Mor(A,B) (that does not change the global state) and a morphism l ↘∈Mor(A×B,A) called the Put
function that satisfy the following conditions for all a ∈ A, b ∈ B and ω ∈ Ω:

l↘ (a, l↗ (a)) = (a, ω)

l↗ (l↘ (a, b, ω)) = (b, ω̃) for some ω̃ ∈ Ω.

The first condition is a direct translation of the original PutGet law. Meanwhile, the second line is a bit
weaker than the original GetPut because the global state may have changed. In particular, we allow the Put
function to change the global state.

An unidirectional (single-valued) synchronization block S is an octuple (A,B,C,D,ΦA−C ,ΦB−D, f, g) that
declares a synchronization action given a pair (a, c) ∈ ΦA−C : A ∼= C of corresponding elements in a base
isomorphism ΦA−C . For each such a tuple in states (ωL, ωR), the synchronization block specifies that the elements
(f(a, ωL), g ↗ (b, ωR)) ∈ B×D gained by the function f and the lens g are in the dependent isomorphism ΦB−D.
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f g

ΦB−D

Figure 1: Schematic overview of unidirectional synchronization blocks

A schematic overview of a synchronization block is depicted in Figure 1. The usage of lenses allows this
declarations to be enforced automatically2. The engine simply computes the value that the right selector should
have and enforces it using the Put operation.

A multi-valued synchronization block is a synchronization block where the lenses f and g are typed with
collections of B and D, for example f : A ↪→ B∗ and g : C ↪→ D∗ where stars denote Kleene closures.

Synchronization Blocks have been implemented in NMF Synchronizations, an internal DSL hosted by C# [1],
[6]. For the incrementalization, it uses the extensible incrementalization system NMF Expressions [7]. This DSL
is able to lift the specification of a model transformation/synchronization in three quite orthogonal dimensions:

• Direction: A client may choose between transformation from left to right or right to left

• Change Propagation: A client may choose whether changes to the input model should be propagated to
the output model, also vice versa or not at all

• Synchronization: A client may execute the transformation in synchronization mode between a left and a
right model. In that case, the engine finds differences between the model and handles them according to
the given strategy (only add missing elements to either side, also delete superfluous elements on the other
or full duplex synchronization)

This flexibility makes it possible to reuse the specification of a transformation in a broad range of different
use cases. Furthermore, the fact that NMF Synchronizations is an internal language means that a wide range of
advantages from mainstream languages, most notably modularity and tool support, can be inherited [8].

1https://github.com/georghinkel/ttc2019-tt2bdd
2If f was also a lens, then the synchronization block can be enforced in both directions.
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Figure 2: Synchronization block to synchronize ports and names

3 Solution
When creating a model transformation with NMF Synchronizations, one has to find correspondences between
input and target model elements and how they relate to each other. The first correspondence is usually clear and
is the entry point for the synchronization process afterwards: The root of the input model should correspond to
the root of the output model, in our case the TruthTable element should correspond to the BDD element, and
their names should match. Furthermore, there is an obvious correspondence between the ports of a truth table
and the ports of a binary decision diagram and the ports used in the truth table have to be equivalent to the
ports in the binary decision diagram.

In the formal language of synchronization blocks, these synchronization rules look like in Figure 2. Because
the required model elements are directly part of the model, they are rather trivial to implement: The developer
just needs to specify the properties that should be synchronized. If an isomorphism other than the identity
should be used, it has to be specified as well.

1 public class TT2BDD : SynchronizationRule<TruthTable, BDD> {
2 public override void DeclareSynchronization() {
3 Synchronize(tt => tt.Name, bdd => bdd.Name);
4 SynchronizeMany(SyncRule<Port2Port>(),
5 tt => tt.Ports,
6 bdd => bdd.Ports);
7 }
8 }

Listing 1: Definition of synchronization blocks from Figure 2 in NMF Synchronizations

The implementation for the synchronization blocks from Figure 2 is depicted in Listing 1. In particular, line
1 defines the isomorphism φTT2BDD, line 3 implements the right synchronization block from Figure 2 and lines
4-6 implement the left one.

More interesting from an incrementalization and also bidirectionalization point of view is the synchronization
between the rows of a truth table with the leafs of a binary decision diagram. Unlike the ports, the Leaf elements
are spread over the entire output model as descendants of the decision diagram. In order to synchronize these
with the input model, we need to create a virtual collection of all Leaf elements of a decision diagram.

1 internal class BDDLeafCollection : CustomCollection<ILeaf> {
2 private readonly BDD _bdd;
3
4 public BDDLeafCollection(BDD bdd) : base(bdd.Descendants().OfType<ILeaf>()) {
5 _bdd = bdd;
6 }
7
8 public override void Add(ILeaf item) {
9 ...

10 }
11
12 public override void Clear() {
13 _bdd.Tree = null;
14 }
15
16 public override bool Remove(ILeaf item) {
17 item.Delete();
18 return true;
19 }
20 }

Listing 2: Virtual collection of the leafs of a binary decision diagram

The implementation of this virtual collection is sketched in Listing 2. Note that in line 4, a query expression of
the collection is provided to the base class. NMF Expressions will use this query expression to receive notifications
when the contents of the virtual collection change. In this case, a notification wil be issued whenever a new Leaf
element is added somewhere in the binary decision diagram.



With this virtual collection, we can synchronize the rows of the truth table with the leafs of the binary decision
diagram as in Listing 3.

1 SynchronizeMany(SyncRule<Row2Leaf>(),
2 tt => tt.Rows,
3 bdd => new BDDLeafCollection(bdd));

Listing 3: Synchronizing the rows of the truth table with the leafs of the binary decision diagram

For such a corresponding pair of a row and a leaf, we need to ensure that the values for all input ports match
and similarly for the output ports. For the output ports, this is rather easy because the way how this information
is represented is very similar in both models: the elements have child elements that have a reference to both the
output port and the value.

1 SynchronizeMany(SyncRule<OutputCell2Assignment>(),
2 row => row.Cells.Where(cell => cell.Port is Metamodels.TruthTables.TT.IOutputPort),
3 leaf => leaf.Assignments);

Listing 4: Synchronizing the output port assignments of rows and leafs

The implementation is depicted in Listing 4. We do not need to create a virtual collection for the output cells
this time because NMF Expressions is able to add, remove and clear a filtered collection itself.

Finally, we need to create a virtual collection for the input assignments of a leaf in a binary decision diagram.
An implementation is sketched in Listing 5.

1 internal class TreeAssignmentsCollection : CustomCollection<TreeAssignment> {
2 private ILeaf _leaf;
3
4 public TreeAssignmentsCollection(ILeaf leaf) : base(
5 leaf.AncestorTree()
6 .Select(tree =>
7 new TreeAssignment((tree.Parent as ISubtree).Port,
8 (tree.Parent as ISubtree).TreeForOne == tree.Child)))
9 {

10 _leaf = leaf;
11 }
12 ...
13 }

Listing 5: Virtual colection of input port assignments of a leaf from a binary decision diagram

Again, we pass a query expression to the base class to allow NMF Expressions to incrementalize it and thus
obtain notifications when the input port assignments of a leaf element change. We use the AncestorTree method
for this that denotes the ancestors of the given element along the Parent relation into a collection that includes the
respective ancestor and its direct child towards the given element. Further, note that the class TreeAssignment
is just a helper class as NMF Synchronizations is not restricted to synchronizing model elements.

The AncestorTree method has been added to NMF specifically for this case. However, we think it can be
valuable for many scenarios where tree structures have to be analyzed. Because NMF Expressions is implemented
as an open framework, any users can write such extensions. In fact, the AncestorTree is also implemented in
the Models sub-project of NMF and not in Expressions as the latter is independent of the model representation
in NMF.

The last missing part of the implementation is the actual implementation of adding an assignment to the
input assignments of a leaf and adding a leaf to a binary decision diagram. Because NMF Synchronizations
executes synchronization blocks from the more specific to the more general, it will first add input assignments
to a leaf before adding that leaf to a binary decision diagram. Our implementation is currently restricted to
this use case, so it would have problems when changes appear that change the input assignments of a leaf
that is already part of a binary decision diagram. Right now, the implementation is relatively simple, for any
assignment, a SubTree element is added with the according input port, adding the topmost ancestor in either
the TreeForOne or TreeForZero reference. Note that most of the inner nodes created here are only temporary
for the synchronization and will be deleted during the transformation.

The by far most complex bit of the implementation in our solution, beating the entire synchronization decla-
ration in terms of lines of code, is the implementation to add a leaf to a binary decision diagram. Whereas the
synchronization blocks allow a very declarative specification, this part of the implementation is very imperative.
This is necessary, because the declarative approach of NMF Synchronizations requires a clear semantics, whereas
for the mapping of assignments has open conceptual problems: Meanwhile it is easily possible in the truth table



model to insert conflicting information (there could be two rows having exactly the same input port cells but
different output port cells), this is just not possible in the binary decision diagrams model.

1 ITree current = item;
2 var assignments = new Dictionary<IInputPort, bool>();
3 var treeStack = new Stack<ISubtree>();
4 while (current != null) {
5 if (current.OwnerSubtreeForOne != null) {
6 assignments.Add(current.OwnerSubtreeForOne.Port, true);
7 treeStack.Push(current.OwnerSubtreeForOne);
8 current = current.OwnerSubtreeForOne;
9 }

10 else if (current.OwnerSubtreeForZero != null) {
11 assignments.Add(current.OwnerSubtreeForZero.Port, false);
12 treeStack.Push(current.OwnerSubtreeForZero);
13 current = current.OwnerSubtreeForZero;
14 }
15 else {
16 if (_bdd.Tree == null) {
17 _bdd.Tree = current;
18 return;
19 }
20 break;
21 }
22 }

Listing 6: Collecting assignments of a leaf

In a first step, we collect the assignments for a leaf to ports. This is depicted in Listing 6. In case the decision
diagram does not have any tree yet, we simply set that tree and return. Otherwise, we collect the assignments in
a dictionary and further keep a stack of inner tree nodes. Afterwards, we go from the root of the binary decision
diagram towards the leafs and select the path that should be taken for the leaf in question. That is, we traverse
the tree, taking the collected assignments as a basis whether to walk the TreeForOne or TreeForZero reference
until we find a spot where an equivalent inner node does not exist.

If we encounter this situation, there are two possibilities, either the current path in the binary decision diagram
yields a null reference or we reach an inner node referencing an input port that is not assigned anything in the
input model. In the former case, we simply add the missing inner nodes. In case the order of variables is the same
as in the temporary inner nodes that come with the leaf, we can save recreating those inner nodes through the
stack of inner nodes. For this, we pop the topmost element from the stack if there is one, provided it references
the same input port. If this is not the case, we forget the stack and create fresh inner nodes afterwards.

The more involved scenario is if we encounter an inner node for which there is no assignment in the leaf to
be added. In that case, we create a new decision node for some yet unprocessed input port. If the value for this
input port equals the value assigned for the current leaf, that leaf will be chosen. Otherwise, we would go on
with the inner node currently visited.

1 var ownerForZero = subTree.OwnerSubtreeForZero;
2 var ownerForOne = subTree.OwnerSubtreeForOne;
3 var ownerBdd = subTree.OwnerBDD;
4 var peek = treeStack.Peek();
5 if (peek.TreeForZero == null) {
6 peek.TreeForZero = subTree;
7 }
8 else if (peek.TreeForOne == null) {
9 peek.TreeForOne = subTree;

10 }
11 // we need to be careful not to accidently delete peek
12 if (ownerForOne != null) {
13 peek.OwnerSubtreeForOne = ownerForOne;
14 }
15 else if (ownerForZero != null) {
16 peek.OwnerSubtreeForZero = ownerForZero;
17 }
18 else if (ownerBdd != null) {
19 peek.OwnerBDD = ownerBdd;
20 }
21 return;

Listing 7: Inserting a new dominating inner node to the current node subTree

The implementation is depicted in Listing 7. We first set the reference not yet set in the selected inner node.
Then, we add this inner node where the previous inner node subTree has been in the containment hierarchy.



The fact that NMF automatically enforces bidirectional references and ensures referential integrity has a
nitpick in this situation: Removing a model element from its container deletes this model element in NMF,
which in turn causes all model elements referencing this model element to delete this reference (in order to avoid
a reference to a deleted element). Hence, the Port reference of an inner node is reset once it is deleted, because
it is an opposite direction reference of the port referencing its inner nodes (which is reset when the inner node
is deleted). Thus, we have to avoid setting any of the container references of an inner node to null, which is the
primary reason for the check statements in lines 11-20.

4 Reflection
Processing a tree structure incrementally is something rarely done with NMF, yet, so this case has been very in-
teresting. In applications we have seen so far, it was usually sufficient to look at the nodes of a tree rather than the
connecting edges. In this case, the edges became very important, also for the analysis from an incrementalization
point of view.

The solution greatly shows the powers, but also the limitations of a declarative approach such as NMF
Synchronizations.
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