
TTC'18: Hawk solution
Answering queries with the Neo4j graph database



What is Hawk?

● Hawk is a heterogeneous model indexing framework:
○ Designed to run queries over many model files
○ In this case we only have one :-(

● Mirrors and links all the models into a graph database
○ We currently support Neo4j, OrientDB, Greycat
○ Always disk-based for now (in-memory DBs later?)

● Provides a DB-agnostic query language
○ Epsilon Object Language

● Can quickly find model elements by:
○ Attribute value (indexed attributes)
○ Expression value (derived attributes/edges)



Solutions implemented

● Naive update + query
● Optimised update + naive query
● Optimised update + optimised query



Solutions implemented: naive solution

● Initialize:
○ Set up Neo4j
○ Register metamodels into Neo4j
○ Register derived attributes

● Load: mirror initial.xmi into Neo4j
● Initial view: run query in EOL
● Update:

○ Load changeX.xmi + initial.xmi
○ Run EOL script to update and save initial.xmi
○ Run incremental reindex of initial.xmi
○ Re-run query in EOL



EMF trickery so we load initial.xmi in reasonable time for sizes > 64



Derived attributes: extending types with precomputed expressions

● We can pre-compute the scores for each element
● Scores will be updated incrementally when the nodes they 

depended on change
● Here we extend Post for Q1 scoring



Derived attributes: use within queries

● We can then use it as a regular attribute
● Had to implement a specific Comparator to sort results by 

score + resolve ties by timestamp
● EOL does not support lambdas



Update and save with EOL

● Hawk normally 
needs to re-read 
files to notice the 
changes (indexer)

● We have to update 
initial.xmi on disk

● Performance hit!



Solutions implemented: optimised update 

● Initialize, load, initial view: same as before
● Update:

○ Load changeX.xmi, use it to update Neo4j directly
■ Uses a custom "updater" component in Hawk
■ No need to save initial.xmi

○ Update derived attributes incrementally as usual
○ Run original query in EOL



Propagating change events to Neo4j: iterating through them



Propagating change events to Neo4j: using them (watch out for basicGetX)



Propagating change events to Neo4j: updating nodes

● We never use initial.xmi anymore - we update nodes in the graph directly
● We find the node in the graph by intrinsic ID, using indexed attributes on Post, 

Comment and User ("id")



Solutions implemented: optimised update + query

● Initialize, load:
○ Almost the same as before
○ No derived attributes used here, though

● Initial view: run original query and store top 3 results
● Update:

○ Register change listeners on the graph
○ Use changeX.xmi to update Neo4j directly again

■ Track which users/comments/posts are changed
○ Rescore impacted elements
○ Merge rescored elements with previous top 3

■ We assume monotonically increasing scores



Updating the top 3 by rescoring updated nodes in the graph (I)



Updating the top 3 by rescoring updated nodes in the graph (II)



Conciseness

● If changes were done directly, Naive can be done with no Java coding at all:
○ Hawk has an Eclipse GUI, we could set up everything manually
○ Only need to write the queries (7 lines of EOL for Q1, 21 lines for Q2)
○ Integrating into benchmark and applying changes required Java coding:

■ EOL update script: 27 lines
■ Other Java code: 770 lines (including comments)

● Incremental update:
○ 400 lines of Java code on top of naive (minus 120 from BatchLauncher)
○ No additional EOL code required

● Incremental update + query:
○ 233 lines of Java code on top of incremental update (minus 120 from BL)
○ Also no additional EOL code required



Correctness

● Kept changing things until the last minute! (2am today)
○ Most of the testing on Q1
○ Almost no testing on Q2 beyond size 1

● Results are as you would expect:
○ Q1 is correct for almost all sizes/iterations from 1 to 64

■ Somehow, two iterations in size 2 fail (need to check)
○ Q2 is correct for sizes 1 and 2, from 4 onwards it is not 100% reliable

■ Sometimes it reports the same elements in a different order
■ Sometimes it reports different elements
■ More debugging needed!



Performance

● Have to hit the disk constantly, unlike other solutions:
○ Hence our order of magnitude slowdown
○ We will consider in-memory Neo4j configurations later

● By mistake, considered some loading times in various steps:
○ Load + save of initial.xmi in Naive
○ Load of changeX.xmi in IncUpdate and IncUpdateQuery

● EOL is interpreted and not compiled
○ Another multiplier on top of having to hit disk
○ Very convenient as a backend-independent query language, though!



Takeaways

● Case was very useful to improve Hawk internally:
○ Lots of little logging improvements (moving away from System.out…)
○ Made a few classes easier to extend by subclassing
○ Improved efficiency of change notifications in local folders
○ Added a new component for monitoring single standalone files
○ Changed Dates to be indexed in ISO 8601 format
○ Added Maven artifact repository to GitHub project

● Learnt a few new bits of EMF black magic:
○ Intrinsic ID maps and DEFER_IDREF_RESOLUTION for initial.xmi loading
○ Differences between EMF *Impl getX() and basicGetX() in proxy resolution

● Got some ideas about:
○ Updating Hawk from EMF change notifications
○ Repackaging query + derived attribute as reusable components
○ Incremental import of XMI files into Hawk



Thank you!


