An NMF solution to the Smart Grid Case at the TTC 2017

Georg Hinkel
FZ1 Research Center of Information Technologies
Haid-und-Neu-Strafse 10-14, 76131 Karlsruhe, Germany
hinkel@fzi.de

Abstract

This paper presents a solution to the Smart Grid case at the Transfor-
mation Tool Contest (TTC) 2017 using the NET Modeling Framework
(NMF). The goal of this case was to create incremental views of multiple
models relevant in the area of smart grids. Our solution uses the in-
cremental model transformation language NMF Synchronizations and
the underlying incrementalization system NMF Expressions.

1 Introduction

Models should represent a system in a very abstract form. However, very often, the model is still too complex for
humans to understand it or make use of it. Furthermore, necessary information is split among multiple models.
Therefore, it is often beneficial for practical applications to reduce the complexity for human modelers through
the use of views that combine the information from multiple models and reduce it to those parts of a model that
are relevant for a particular task.

The Smart Grid Case of the Transformation Tool Contest (TTC) 2017 proposes a benchmark for such a
scenario. Here, the modeled system is a smart grid where the necessary information to detect or predict is
split among multiple models according to existing standards. The views originate from a model-based outage
management system [Mit, BMK16] implemented using existing model view technology [BHK™14].

If the source model changes, the view has to be adapted to the changed source. For large models, it becomes
very slow to recompute the entire model from scratch, in particular, since changes usually only affect small parts
of the model. Rather, it is much more efficient to only propagate the changes to the view in an incremental
manner. However, implementing such a change propagation manually can be a very laborious task that further
conceals the code intention, i.e. the view that is actually being computed.

This paper presents a solution to the proposed benchmark using the incremental model transformation lan-
guage NMF Synchronizations [Hinl5|, integrated into the .NET Modeling Framework (NMF, [Hinl6]). The
solution is publicly available on Github!. We first give a very brief introduction into synchronization blocks,
the formalism underneath NMF Synchronizations in Section 2 before Section 3 presents the solution. Section 4
evaluates the solution against the reference solution in MODELJOIN and finally Section 5 concludes the paper.

2 Synchronization Blocks

Synchronization blocks are a formal tool to run model transformations in an incremental (and bidirectional) way.
They combine a slightly modified notion of lenses [FGM T 07| with incrementalization systems. Model properties
and methods are considered morphisms between objects of a category that are set-theoretic products of a type
(a set of instances) and a global state space Q.

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.
In: A. Garcia-Dominguez, F. Krikava and G. Hinkel (eds.): Proceedings of the 10th Transformation Tool Contest, Marburg,

Germany, 21-07-2017, published at http://ceur-ws.org
Ihttps://github.com/georghinkel/ttc2017smartGrids

A (well-behaved) in-model lens [: A < B between types A and B counsists of a side-effect free GET morphism
l /'€ Mor(A, B) (that does not change the global state) and a morphism | \ & Mor(A x B, A) called the Putr
function that satisfy the following conditions for all a € A and w € Q:

I (a1 7 (a)) = (a,w)
1IN\ (a,c,w)) = (a,w) for some @ € Q.

The first condition is a direct translation of the original PUTGET law. Meanwhile, the second line is a bit
weaker than the original GETPUT because the global state may have changed. In particular, we allow the PuT
function to change the global state.

An unidirectional (single-valued) synchronization block S is an octuple (A, B,C, D, ®4_¢,Pp_p, f,g) that
declares a synchronization action given a pair (a,c¢) € ®4_¢ : A = C of corresponding elements in a base
isomorphism ® 4_¢. For each such a tuple in states (wy,, wgr), the synchronization block specifies that the elements
(f(a,wr),g9 7 (bywr)) € Bx D gained by the function f and the lens g are in the dependent isomorphism ®5_p.

€

by_c
A& C
g €
B &< D

®p_p

Figure 1: Schematic overview of unidirectional synchronization blocks

A schematic overview of a synchronization block is depicted in Figure 1. The usage of lenses allows this
declarations to be enforced automatically?. The engine simply computes the value that the right selector should
have and enforces it using the PUT operation.

A multi-valued synchronization block is a synchronization block where the lenses f and g are typed with
collections of B and D, for example f : A < Bx and g : C' < Dx where stars denote Kleene closures.

Synchronization Blocks have been implemented in NMF Synchronizations, an internal DSL hosted by C#
[Hin15].

3 Solution

We discuss the solutions to the outage detection and the outage prevention tasks separately in Sections 3.1 and
3.2.

3.1 Outage Detection

In NMF Synchronizations, the support for multiple input pattern elements is rather limited. As a reason, we
experienced with NTL [Hin13] that multiple input elements is a rare case, but required a tremendous amount
of code to support it. At the same time, the advantages of a true support for multiple input elements over
transformation of tuples is limited.

Therefore, the easiest way to support multiple input pattern elements in NMF Synchronizations is to simply
use tuples as inputs. Then, the model matching has to be adapted to match tuples instead of elements. Therefore,
the main rule synchronizes a tuple of the CIM model and the COSEM model with the resulting view model.

(I)MainRule
CIM Root x COSEM Root > Model

(join) l 1.RootElement5.0nype < EnergyConsumer >

(Meter Asset x Physical Device)x &———=> EnergyConsumers

AssetToConsumer

Figure 2: The join in the outage detection task formulated in a synchronization block

In a synchronization block, the main join of meter assets with physical devices is depicted in Figure 2, where
we abbreviated the join expression. The implementation of this matching is depicted in Listing 1.

2If f was also a lens, then the synchronization block can be enforced in both directions.

public class MainRule : SynchronizationRule<Tuple<CIMRoot, COSEMRoot>, Model> {
public override void DeclareSynchronization() {
SynchronizeManyLeftToRightOnly (SyncRule<AssetToConsumer >(),

sg => from pd in sg.Item2.PhysicalDevice
join ma in sg.Iteml.IDobject.0fType<IMeterAsset>()
on pd.ID equals ma.MRID
select new Tuple<IMeterAsset, IPhysicalDevice>(ma, pd),

target => target.RootElements.0fType<IModelElement, OutageDetectionJointarget.IEnergyConsumer >());

OO OO Uk WN -

—=

Listing 1: The implementation of the main rule for outage the outage detection task

Because .NET has a hard implementation of generics®, a type filter can be easily specified by passing generic
type arguments. NMF also contains an overload of the 0fType type filter that accepts two type arguments and
keeps the collection interface.

In particular, the incrementalization system NMF Expressions that is underlying NMF Synchronizations does
support joins, available also through the query syntax of C#. A second synchronization rule then implements
the kept attributes for every such a tuple, as depicted in Listing 2.

1 | public class AssetToConsumer : SynchronizationRule<Tuple<IMeterAsset, IPhysicalDevice>, IEnergyConsumer> {
2 public override void DeclareSynchronization() {

3 SynchronizeLeftToRightOnly (

4 asset => Convert.ToInt32(asset.Item2.AutoConnect.Connection), e => e.Reachability);

5 SynchronizeLeftToRightOnly (asset => asset.Item2.ElectricityValues.ApparentPowermLl, e => e.PowerA);

6 SynchronizeLeftToRightOnly (asset => asset.Iteml.ServiceDeliveryPoint.EnergyConsumer .MRID, e => e.ID);
7 SynchronizeLeftToRightOnly (

8 asset => asset.Iteml.ServiceDeliveryPoint.EnergyConsumer is ConformLoad 7

9 ((ConformLoad)asset.Iteml.ServiceDeliveryPoint.EnergyConsumer)

10 .LoadGroup.SubLoadArea.LoadArea.ControlArea.MRID

11 ((NonConformLoad)asset.Iteml.ServiceDeliveryPoint.EnergyConsumer)

12 .LoadGroup.SubLoadArea.LoadArea.ControlArea.MRID,

13 e => e.ControlArealD);

14 SynchronizeLeftToRightOnly (SyncRule<LocationToLocation>(),

15 asset => asset.Iteml.Location, e => e.Location);

16 }

17 |}

Listing 2: Implementation of kept attributes and references in the outage detection task

Two further synchronization rules synchronize location and position point.

3.2 Outage Prevention

In the implementation of the outage prevention task, the principle approach to use tuples to synchronize multiple
inputs is the very same approach as in the outage detection task. The implementation of the main rule is depicted
in Listing 3.

1 | public class MainRule

2 SynchronizationRule <Tuple<CIMRoot , COSEMRoot, Substandard>, Model> {

3 public override void DeclareSynchronization() {

4 SynchronizeManyLeftToRightOnly (SyncRule <MMXUAssetToVoltageMeter >(),

5 dr => dr.Iteml.IDobject.0fType<IMeterAsset>()

6 .Join(dr.Item3.LN.OfType <IMMXU>(),

7 asset => asset.MRID,

8 mmxu => mmxu.NamePlt.IdNs,

9 (asset, mmxu) => new Tuple<IMeterAsset, IMMXU>(asset, mmxu)),
10 model => model.RootElements.0fType<IModelElement, IPMUVoltageMeter>());

11

12 SynchronizeManyLeftToRightOnly (SyncRule<DeviceAssetToPrivateMeterVoltage >(),
13 dr => dr.Iteml.IDobject.O0fType<IEndDeviceAsset>()

14 .Join(dr.Item2.PhysicalDevice,

15 asset => asset.MRID,

16 pd => pd.ID,

17 (asset, pd) => new Tuple<IEndDeviceAsset, IPhysicalDevice>(asset, pd)),
18 model => model.RootElements.0fType<IModelElement, IPrivateMeterVoltage>());
19 }

20 |}

Listing 3: The implementation of the main rule in the outage prevention task

3This means that the generic type arguments are still available at runtime.

In this listing, we used the alternative method chaining syntax for the join. Both syntaxes are equivalent, as
the compiler converts the query syntax into the method chaining syntax.

To handle the different transformation of the various subtypes of a power system resource, we utilize the rule
instantiation feature of NMF Synchronizations. With a rule instantiation, the isomorphism represented by a
synchronization rule can be refined for a subset of model elements.

1 | public class PowerSystemResource2PowerSystemResource

2 SynchronizationRule <IPowerSystemResource, IPowerSystemResource> {

3 public override void DeclareSynchronization() {}

4 |}

5 | public class ConductingEquipment2ConductingEquipment

6 SynchronizationRule <IConductingEquipment , IConductingEquipment> {

7 public override void DeclareSynchronization() {

8 SynchronizeManyLeftToRightOnly (SyncRule<Terminal2Terminal >(),

9 conductingEquipment => conductingEquipment.Terminals, equipment => equipment.Terminals);
10 MarkInstantiatingFor (SyncRule <PowerSystemResource2PowerSystemResource>());
11 }

12 |}

Listing 4: Transforming power system resources

An example of synchronization rule instantiation for conducting equipment is depicted in Listing 4. This
means that whenever a power system resource is a conducting equipment, also its terminals are synchronized.

4 Evaluation

Our solution is quite concise as it only consists of 58 lines of code for the outage detection scenario and 195 lines
of code for the outage prevention scenario. Both numbers include empty lines as well as lines that only contain
braces. Another 140 lines of code actually run the benchmark.

The performance results are depicted in Figure 3. They show that after an initial overhead, the time to
propagate updates is nearly constant, indicating no larger bottleneck.

o

NMF, ChangeSet: changeSequence2, Function: Update

=
—

Time (ms)

o
e

0.01

Iterations

View OutageDetection “- OutagePrevention

Figure 3: Update times for change sequence 2

The comparison with the reference solution in MODELJOIN reveals that the incremental update processing of
our solution is more than an order of magnitude faster than recomputing the view after every change sequence.
The results are depicted in Figure 4.

However, the results also indicate that more change sequences available for different sizes are necessary to
evaluate the scalability of our solution.

Unfortunately, the reference solution in ModelJoin produced compilation errors for the generated QVTo-
transformations, which is why we cannot compare with this implementation in the OutagePrevention task, but
we look forward to compare our solution with other solutions of the case.

OutageDetection, Function: Update

1000

Time (ms)

100

changeSequencel changeSequence2
ChangeSet

Tool = ModelJoin A= NMF

Figure 4: Results for the outage detection task

5 Conclusion

In this paper, we presented the NMF solution to the Smart Grid case at the TTC 2017. The solution shows
how synchronization blocks, in particular their implementation in NMF Synchronizations can be used to perform
incremental view computations. The resulting solution is faster than the reference implementation by multiple
orders of magnitude.

References

[BHK*14]

[BMK16]

[FGM*07]

[Hin13]

[Hinl5]

[Hin16]

[Mit]

Erik Burger, Jorg Henfs, Martin Kiister, Steffen Kruse, and Lucia Happe. View-Based Model-Driven
Software Development with ModelJoin. Software €& Systems Modeling, 15(2):472-496, 2014.

Erik Burger, Victoria Mittelbach, and Anne Koziolek. Model-driven consistency preservation in
cyber-physical systems. In Proceedings of the 11th Workshop on Models@run.time co-located with
ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems
(MODELS 2016). CEUR Workshop Proceedings, October 2016.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt.
Combinators for bidirectional tree transformations: A linguistic approach to the view-update prob-
lem. ACM Transactions on Programming Languages and Systems (TOPLAS), 29(3), May 2007.

Georg Hinkel. An approach to maintainable model transformations using internal DSLs. Master
thesis, 2013.

Georg Hinkel. Change Propagation in an Internal Model Transformation Language, pages 3—17.
Springer International Publishing, Cham, 2015.

Georg Hinkel. NMF: A Modeling Framework for the .NET Platform. Technical report, Karlsruhe
Institute of Technology, Karlsruhe, 2016.

Victoria Mittelbach. Model-driven Consistency Preservation in Cyber-Physical Systems. Master’s
thesis, Karlsruhe Institute of Technology (KIT), Germany.

