
Families to Persons Case with UML-RSDS

K. Lano,
Dept. of Informatics, King’s College London

S. Kolahdouz-Rahimi,
Dept. of Software Engineering, University of Isfahan, Iran

Abstract. In this paper we describe a solution to the families to persons
bx case using the UML-RSDS subset of UML and OCL.

1 Introduction

UML-RSDS uses a subset of UML 2 and OCL 2.4 to specify general applications,
and model transformations. Application data and MT metamodels are defined
by class diagrams, and application functionality and transformations are defined
by the postconditions of use cases [3]. Executable code in Java, C#, C and C++
can be automatically generated from UML-RSDS specifications.

Bx specification is supported by the automated synthesis of inverse transfor-
mations from the forward direction of a transformation (provided this satisfies
some restrictions) [2]. Transformations can also be applied incrementally.

In terms of the case description, ours is a correspondence-based approach.
Change-propagation of all four types is supported in principle, although we have
only implemented add and attribute changes for this case.

2 Forward transformation

Figure 1 shows the class diagram of the person and family models, enhanced
by primary keys personId and memberId recording the source-target correspon-
dence, according to the Auxiliary Correspondence Model pattern [3]. The for-
ward transformation is defined by the use case person2family , its inverse is de-
fined by family2person.

According to the case statement, the following invariants (I1), (I2), (I3), (I4)
must be established and maintained by the transformations:

(I 1) : Family→forAll(fam |
FamilyMember→forAll(m | m ∈ fam.mother→union(fam.daughters) ⇒

Female→exists(f | f .personId = m.memberId &
f .familyId = fam.id &
f .name = fam.name + ”, ” +m.name)))

Fig. 1. Metamodels of Families to Persons case

(I 2):

Family→forAll(fam |
FamilyMember→forAll(m | m ∈ fam.father→union(fam.sons) ⇒

Male→exists(f | f .personId = m.memberId &
f .familyId = fam.id &
f .name = fam.name + ”, ” +m.name)))

These express that the families model is consistent wrt the persons model.
(I 3):

Female→forAll(f |
FamilyMember→exists(m | m.memberId = f .personId &

Family→exists(fam | fam.id = f .familyId &
m ∈ fam.mother→union(fam.daughters) &
f .name = fam.name + ”, ” +m.name)))

(I 4):

Male→forAll(f |
FamilyMember→exists(m | m.memberId = f .personId &

Family→exists(fam | fam.id = f .familyId &
m ∈ fam.father→union(fam.sons) &
f .name = fam.name + ”, ” +m.name)))

These constraints express that the persons model is consistent wrt the families
model.

As usual for bx, the relations (I3) and (I4) characterising one direction of the
transformation are logical duals of the relations (I1) and (I2) characterising the
opposite direction. (I3) can be mechanically derived from (I1), and vice-versa,
and similarly for (I4) and (I2). The conjunction of (I1), (I2), (I3), (I4) expresses
the bijective correspondence of persons and family members, and the bx relation
R of the transformation.

The mapping from families to persons is already defined explicitly by (I1) and
(I2). These can be expressed in OCL as postconditions (transformation rules) of
the use case for the family2person transformation:

Family::

m : mother->union(daughters) =>

Female->exists(f | f.personId = m.memberId &

f.familyId = id &

f.name = name + ", " + m.name)

Family::

m : father->union(sons) =>

Male->exists(f | f.personId = m.memberId &

f.familyId = id &

f.name = name + ", " + m.name)

The semantics of E→exists(e | e.eId = v & P) in the case that eId is an identity
attribute of E is that the E object with eId value equal to v is looked up, if
it exists, and is then modified according to P . If the object does not exist, it is
created and then modified.

(I3) and (I4) are invariants of this transformation (they are preserved by each
application of either of the above rules). On the other hand, if (I1) and (I2) al-
ready hold between the family and person models, then re-applying family2person
should have no effect. In particular, the birthday of existing persons is not mod-
ified by family2person if (I1) and (I2) hold.

An additional postcondition sets PersonRegister :: persons to be all existing
Person instances:

PersonRegister::

persons = Person.allInstances

To define the mapping from persons to families, we logically strengthen (I3)
and (I4) and turn them into explicit constraints by enforcing that persons are
mapped to parents unless there is already a parent of that gender in a family, in
which case they are mapped to children. We assume that mother , father , sons,
daughters are pairwise disjoint. We also use String library operations before and
after to split the person name:

Female::

FamilyMember->exists(m | m.memberId = personId &

Family->exists(fam | fam.id = familyId &

(fam.mother@pre.size = 0 => m : fam.mother & m /: fam.daughters) &

(fam.mother@pre.size > 0 & fam.mother@pre->excludes(m) => m : fam.daughters) &

fam.name = StringLib.before(name, ", ") &

m.name = StringLib.after(name, ", ")))

Male::

FamilyMember->exists(m | m.memberId = personId &

Family->exists(fam | fam.id = familyId &

(fam.father@pre.size = 0 => m : fam.father & m /: fam.sons) &

(fam.father@pre.size > 0 & fam.father@pre->excludes(m) => m : fam.sons) &

fam.name = StringLib.before(name, ", ") &

m.name = StringLib.after(name, ", ")))

(I1) and (I2) are clearly invariants of this transformation. Again, if (I3) and (I4)
already hold, applying person2family should not modify the target model.

An additional postcondition sets the FamilyRegister families to be all existing
Family instances:

FamilyRegister::

families = Family.allInstances

3 Change propagation

Changes to the family model should propagate to the person model, and vice-
versa, as follows (Table 1).

family model change person model change

New FamilyMember new Male or Female

New Family no change

Changed Family :: name changed name for each
person from the family

Changed FamilyMember :: name changed name for
corresponding person

Move a member from father no change
to sons in family

person model change family model change

New Person new FamilyMember , possibly new Family

Changed Person :: familyId moves corresponding member
to new or modified Family

Changed Person :: name changes name of corresponding
member and possibly of its family

Changed Person :: birthday no change
Table 1. Change-propagation between models

The choice between creating a new family or updating an existing family is
made by using Person :: familyId . If a person p has p.familyId equal to the id
of some existing family f , then p is added to f by person2family , otherwise a
new family is created and p is added to that family. In the first case, the family
name of p should equal f .name.

4 Evaluation

In this section we evaluate the correctness and efficiency of the bx using different
change-propagation scenarios. A Java 4 implementation of the transformation
code and invariant checks was generated. All tests were carried out on a standard
Windows 7 laptop with Intel i3 2.53GHz processor using 25% of processing
capacity.

We wrote an implementation of the BXTool interface adapted to our test
environment as follows:

– initiateSynchronisationDialogue() creates corresponding FamilyRegister and
PersonRegister objects.

– performAndPropagateTargetEdit(String f) loads a delta model file f contain-
ing new person model elements or model changes, and runs person2family
on the updated person model.

– performAndPropagateSourceEdit(String f) loads a file f containing new fam-
ily model elements/model changes, and runs family2person on the updated
family model.

– performIdleTargetEdit(String f) loads a file f containing new person model
elements/model changes, and updates the person model with these changes.

– performIdleSourceEdit(String f) loads a file f containing new family model
elements/model changes, and updates the family model with these changes.

– setConfigurator(Object c) has no effect because we use a fixed update strat-
egy.

– assertPostcondition(Object x ,Object y) checks if (I1) and (I2) hold.
– assertPrecondition(Object x ,Object y) checks if (I3) and (I4) hold.
– saveModels(String f) saves the models in file f .

The main class, Controller , of the Java executable implements this interface.
We define test cases for change scenarios in Table 1, the starting models

for these tests are in test1.txt , ..., test7.txt and the delta model fragments
are in test1delta.txt , ..., test7delta.txt . The transformation implementation is
in Controller .java, the main method of this program runs test number n when
invoked with argument n:

java Controller n

Models and model deltas are written in OCL text format, eg.:

m : Male

m.name = "Windsor, Charles"

m.personId = "1"

m.birthday = 19471025

m : pregister.persons

defines a person with a given set of attribute values belonging to the collection
persons of the (previously created) pregister .

The results of the tests are shown in Table 2. The result files are in out1.txt ,
..., out7.txt . Inspection of the result files confirmed that the expected updates
had been performed.

Test Description (I1) & (I2) (I3) & (I4) Execution time

1 Changed Person name, familyId true true 10ms
2 Changed Person birthday true true 10ms
3 New Persons (10000) true true 35s

4 Changed Family name true true 10ms
5 Changed FamilyMember name true true 10ms
6 New Family true true 10ms
7 New FamilyMember (50000) true true 27s

Table 2. Test case correctness and efficiency

Figure 2 shows the time (in ms) for test 7 delta files of increasing size (in terms
of number of person instances). Similar time-complexity graphs are observed for
other test cases.

The code of the case solution and the test files may be found at nms.kcl.ac.uk/
kevin.lano/uml2web/persons2fam.zip. These have also been uploaded to SHARE.

Fig. 2. Execution time of test7

The file mm.txt contains the complete solution specification, including metamod-
els, transformation rules and invariants.

The size metrics for the transformation rules of the solution are:

– Lines of code: 30
– Number of words: 182
– Number of characters: 936

5 Conclusions

We have shown that the case can be solved by the bx facilities supported by
UML-RSDS, with the limitation that manual refinement of the forward trans-
formation was necessary in this case to express the preference for mapping per-
sons to parents. Deletion changes are not yet supported. The solution has the
advantage of being declarative and closely related to the logical expression of
the problem. The efficiency is practical for model sizes up to 50,000 elements.

References

1. K. Lano, S. Kolahdouz-Rahimi, Model-transformation Design Patterns, IEEE
Transactions in Software Engineering, vol 40, 2014.

2. K. Lano, S. Yassipour-Tehrani, Verified bidirectional transformations by construc-
tion, VOLT ’16, MODELS 2016.

3. K. Lano, Agile Model-based Development using UML-RSDS, Taylor and Francis,
2016.

