
Solving the TTC Families to Persons Case with FunnyQT

Tassilo Horn
tsdh@gnu.org

The GNU Project

Abstract

This paper describes the FunnyQT solution to the bidirectional TTC
2017 Families to Persons transformation case. The solution is simple
and concise and passes all batch transformation and some of the incre-
mental tests.

1 Introduction

This paper describes the FunnyQT1 [Hor16, Hor15] solution of the TTC 2017 Families to Persons case [ABW17].
With only 52 lines of declarative code, the solution is able to pass all batch transformation tests and some of the
incremental tests. The solution project is available on Github2, and there’s a SHARE demo3 which includes both
the transformation source code and the benchmarx 4 testing framework with the integrated FunnyQT solution.

FunnyQT is a model querying and transformation library for the functional Lisp dialect Clojure5. Queries
and transformations are Clojure programs using the features provided by the FunnyQT API.

Clojure provides strong metaprogramming capabilities that are used by FunnyQT in order to define several
embedded domain-specific languages (embedded DSL) for different querying and transformation tasks.

FunnyQT is designed with extensibility in mind. By default, it supports EMF [SBPM08] and JGraLab 6

TGraph models. Support for other modeling frameworks can be added without having to touch FunnyQT’s
internals.

The FunnyQT API is structured into several namespaces, each namespace providing constructs supporting
concrete querying and transformation use-cases, e.g., model management, functional querying, polymorphic func-
tions, relational querying, pattern matching, in-place transformations, out-place transformations, bidirectional
transformations, and some more. For solving the families to persons case, its bidirectional transformation and
relational model querying DSLs have been used.

2 Solution Description

This section explains the FunnyQT solution. First, section 2.1 introduces the basic syntax and semantics of its
embedded bidirectional transformation DSL. Thereafter, 2.2 explains the actual transformation solving the case.
Lastly, 2.3 explains how the solution is integrated into the benchmarx framework.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

1http://funnyqt.org
2https://github.com/tsdh/ttc17-families2persons-bx
3http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_BenchmarX_FunnyQT2.vdi
4https://github.com/eMoflon/benchmarx/
5http://clojure.org
6https://github.com/jgralab/jgralab

mailto:tsdh@gnu.org
http://funnyqt.org
https://github.com/tsdh/ttc17-families2persons-bx
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_BenchmarX_FunnyQT2.vdi
https://github.com/eMoflon/benchmarx/
http://clojure.org
https://github.com/jgralab/jgralab


2.1 FunnyQT’s Bidirectional Transformation DSL

FunnyQT’s bidirectional transformation DSL is based on its relational model querying DSL. This DSL is based on
the Clojure port of miniKanren7 [Byr09] named core.logic8. FunnyQT is able to generate a relational querying
API for a given metamodel. Using that, a custom relation like the following can be written. In there, the
namespace alias ccl denotes core.logic constructs and the alias f denotes relations generated by FunnyQT.

(defn same-named-mother-and-childo [f family mother child name]
(ccl/all
(f/Family f family)
(f/->mother f family mother)
(f/name f mother name)
(ccl/conde
[(f/->daughters f family child)]
[(f/->sons f family child)])

(f/name f child name)))

A relation like same-named-mother-and-childo9 is defined as a plain function with a name and a argument
vector. By convention, all generated relations require the model being queried as first argument, i.e., f denotes
a family model. The relation describes a family with a mother having some name. Additionally, the family has a
daughter or son10 child which happens to have the same name as the mother.

An application of such a relation (called a goal) delivers all possible solutions, i.e., all tuples of a family, its
mother, a child of the family, and a name which is the name of both mother and child. Any parameter can be
both input and output. If it is fresh (not bound already), it’ll be bound to every possible solution one after the
other. If it is ground (already bound to some concrete value), it restricts the sequence of possible solutions of
the remaining fresh variables.

Based on the relational model querying API described above, FunnyQT provides a bidirectional transformation
DSL. A bidirectional transformation is defined with the bx/deftransformation11 macro, it has a name, and an
argument vector.

(bx/deftransformation something2anything [st at]
;; t-relations...
)

The first and second argument always denote the transformation’s two models. In the example, we say that
st is the left model and at is the right model12.

Such a transformation definition gets compiled to a plain Clojure function which receives the left and the right
models, then an argument denoting the direction in which the transformation is to be executed, and then any
additional arguments the transformation might declare (none in the example). Thus, it can simply be executed
as shown in the next listing.

(something2anything my-left-model my-right-model :right)
;; Valid directions:
;; :right: enforce in the direction of the right model
;; :left: enforce in the direction of the left model
;; :right-checkonly: check if the right model corresponds to the left. Returns trace information for any
;; t-relation showing both elements that could and could not be related to elements in the other model.
;; :right-checkonly: check if the left model corresponds to the right

A bidirectional transformation consists of named transformation relations which define correlations between
elements in the left model and elements in the right model using a :left and a right clause, each being a
vector of relational goals forming an implicit conjunction. All goals have to succeed for a valid correlation to be
established.

7http://minikanren.org/
8https://github.com/clojure/core.logic
9As miniKanren was originally implemented for Scheme which doesn’t require a namespace system, it has become a convention

to suffix relations with “o” to disambiguate them from functions.
10ccl/conde is a disjunction where both clauses may succeed.
11In all listings, the namespace alias bx prefixes constructs from FunnyQTs bidirectional transformation namespace.
12For a truly bidirectional approach, I think the terminology source/target models and transforming in forward or backward

direction is at odds. FunnyQT speaks of a left and a right model and transforms in the direction of either of those.

http://minikanren.org/
https://github.com/clojure/core.logic


(any2some
:left [(s/Some st ?some)

(s/name st ?some ?value)]
:right [(a/Any at ?any)

(a/name at ?any ?value)])

The any2some transformation relation describes that an element ?some of type Some in the left model corresponds
to an element ?any of type Any in the right model in case the name attribute of both elements has the same ?value.
In a transformation relation, all logic variables are prefixed with a question mark. The variables st and at aren’t
because they are the transformation’s input arguments, the left and the right model.

Transformation relations have a forall-there-exists semantics, i.e., when the example transformation is enforced
in the direction of the right model, it ensures that for every Some element there will be an Any element with the
same name. If there are multiple Some elements with the same name, then just one Any element with that name
will suffice.

Transformation relations may also have preconditions defined as a :when clause. Like :left and :right, it is
a vector of relational goals forming a conjunction. However, whereas either the :left or :right clause may lead
to creation or modification of elements depending on the direction the transformation is executed in, the :when
clause is always exectued in check-only mode. It is a typical place to define goals which query the transformation’s
trace model or perform computations on plain values like translating between ages and years of birth.

To define the control flow inside a transformation, there are two mechanisms available. First, at least one t-
relation must be annotated with ^:top metadata. These are executed implicitly in declaration order. Secondly, a
t-relation may have a :where clause containing arbitrary code. Usually, this clause is used to call other t-relations
with elements matched or created by the calling t-relation.

The FunnyQT bidirectional transformation DSL has many more features not discussed in this short intro
like inheritance between transformations and extension of t-relations. Some of them are used and described in
the actual transformation below. For the others, refer to [Hor16] and the documentation linked from http:
//funnyqt.org.

2.2 The Families to Persons Transformation

In this section, the actual FunnyQT transformation is going to be discussed. As a first step, relational querying
APIs for the two metamodels are generated.

1 (rel/generate-metamodel-relations "metamodels/Families.ecore" f)
2 (rel/generate-metamodel-relations "metamodels/Persons.ecore" p)

This makes the relations for the families metamodel available with the namespace alias f and those of the
persons metamodel with alias p.

Next, we define some helper relation which defines the possible kinds of relationships between a family and a
family member depending on if we prefer to create parents over creating children (parameter pref-parent). This
is a higher-order relation in that the two remaining parameters are a parent relation prel (either f/->father or
f/->mother has to be given) and a child relation (either f/->daughters or f/->sons has to be given).

3 (defn relationshipo [pref-parent f family member prel crel]
4 (ccl/conda
5 [(bx/target-directiono :right) ;; (1)
6 (ccl/conde
7 [(prel f family member)]
8 [(crel f family member)])]
9 [(bx/existing-elemento? member)] ;; (2)

10 [(ccl/== pref-parent false) ;; (3)
11 (crel f family member)]
12 [(bx/unseto? f family prel member) ;; (4)
13 (prel f family member)]
14 [(crel f family member)])) ;; (5)

ccl/conda is like a short-cutting logical OR. The n-th clause is only tried if all preceeding clauses fail13. The
first clause succeeds when we are transforming into the direction of the right model, i.e., the person register. In
this case, member may be in a parental role of family (prel), or it might be in a child role (crel). We don’t really
care but want to ensure that all members of the given family are reachable, thus we use a non-short-cutting
ccl/conde. All other clauses deal with transforming in the direction of the family model.

13In contrast to ccl/conde which gives every clause a chance to succeed.

http://funnyqt.org
http://funnyqt.org


The second clause deals with the case where member is an already existing element, i.e., not coming into being
by the current execution of the transformation. Here, we assume that this member is already properly assigned
to a family, so we simply succeed without doing anything.

In clause three, if we do not prefer assigning to parental roles, then the child relation crel must succeed
between the family and the member.

In the fourth clause, if the family’s parental role is still unset or already assigned to member, then the parental
relation must succeed between the family and the member.

Lastly, if no clause has succeeded until now, then the child relation has to succeed. Since a family can have
an arbitrary number of children, this goal can always succeed.

In the following, the actual transformation definition is explained. It starts with the following.

15 (bx/deftransformation families2persons [f p prefer-parent prefer-ex-family]
16 :delete-unmatched-target-elements true
17 :id-init-fn bx/number-all-source-model-elements

The transformation’s name is families2persons and it declares four parameters. The parameter f is the family
model (the left model), p is the persons model (the right model), prefer-parent is a boolean flag determining if
we prefer creating parents to creating children, and prefer-ex-family is a boolean flag, too, determining if we
prefer re-using existing families over creating new families for new family members.

By default, bidirectional FunnyQT transformations will never delete elements from the current target model,
i.e., the model in whose direction the synchronization is performed. The reason for that behavior is that it
allows to run the transformation first in one direction and then in the other direction in order to perform a full
synchronization where missing elements are created in each of the two models. Thus, after running a trans-
formation, e.g., in the direction of the right model, it is only ensured that for each element (considered by
the transformation’s rules) in the left model, there is a corresponding counterpart in the right model. How-
ever, the right model might still contain elements which have no counterpart in the left model. With option
:delete-unmatched-target-elements set to true, this behavior is changed. Elements in the current target model
which are not required by the current source model and the transformation relations are deleted.

The next option, :id-init-fn, has the following purpose. In this transformation case, family members and
persons don’t have some kind of unique identity. For example, it is allowed to have two members named Jim with
the same name in the very same family Smith. With FunnyQT’s forall-there-exists semantics, it would suffice
to create just one person in the right model with the name set to “Smith, Jim”. However, the case description
mandates that we create one person for every member and vice versa, no matter if they can be distinguished
based on their attribute values. For such scenarios, FunnyQT’s bidirectional transformation DSL provides a
concept of synthetic ID attributes. The value of :id-init-fn has to be a function which returns a map from
elements to their synthetic IDs. The built-in function bx/number-all-source-model-elements returns a map where
every element in the source model gets assigned a unique integer number. These synthetic IDs are then used in
a transformation relation which is discussed further below.

The first transformation relation, family-register2person-register, transforms between family and person
registers.

18 (^:top family-register2person-register
19 :left [(f/FamilyRegister f ?family-register)]
20 :right [(p/PersonRegister p ?person-register)]
21 :where [(member2female :?family-register ?family-register :?person-register ?person-register)
22 (member2male :?family-register ?family-register :?person-register ?person-register)])

It is defined as a top-level rule meaning that it’ll be executed as the transformation’s entry point. It’s :left
and :right clauses describe that for every ?family-register there has to be a ?person-register and vice versa.
We assume that there’s always just one register in each model.

The :where clause defines that after this relation has been enforced (or checked in checkonly mode), then the
two transformation relations member2female and member2male have to be enforced (or tested) between the current
?family-register and ?person-register14.

The next transformation relation, member2person, describes how family members of a family contained in a
family register in the left model correspond to persons contained in a person register in the right model. As

14Transformation relations are called with keyword parameters. The two calls in the :where clause say that the current
?family-register will be bound to the logic variable with the same name in the called relation, and the same is true for the
?person-register.



can be seen, there’s no goal describing how the ?family and the ?member are connected in the :left clause, and
in the :right clause we’re dealing just with a ?person of class Person which is abstract. As such, this relation
is not sufficient for the complete synchronization between members in the different roles of a family to females
and males. Instead, it only captures the aspects that are common in the cases where mothers and daughters are
synchronized with females and fathers and sons are synchronized with males. Therefore, this relation is declared
abstract.

23 (^:abstract member2person
24 :left [(f/->families f ?family-register ?family)
25 (f/Family f ?family)
26 (f/name f ?family ?last-name)
27 (f/FamilyMember f ?member)
28 (f/name f ?member ?first-name)
29 (id ?member ?id)
30 (ccl/conda
31 [(ccl/== prefer-ex-family true)]
32 [(bx/existing-elemento? ?member)
33 (id ?family ?last-name)]
34 [(id ?family ?id)])]
35 :right [(p/->persons p ?person-register ?person)
36 (p/Person p ?person)
37 (p/name p ?person ?full-name)
38 (id ?person ?id)]
39 :when [(rel/stro ?last-name ", " ?first-name ?full-name)])

So what are these common aspects? Well, a ?member of a ?family (where we haven’t determined the role, yet)
contained in the ?family-register passed in as parameter from family-register2person-register corresponds
to a ?person (where we haven’t determined the gender, yet) contained in the ?person-register passed in as the
other parameter from family-register2person-register. The :when clause defines that the concatenation of the
?family’s ?last-name, the string ", " and the ?member’s ?first-name gives the ?full-name of the ?person.

What hasn’t been described so far are the id goals in lines 29, and 34 and the ccl/conda goal starting in
line 30. The first two define that the ?member and the corresponding ?person must have the same synthetic ID.
Remember the :id-init-fn in line 17 which assigned a unique number to every element in the respective source
model of the transformation. With these synthetic IDs, the transformation is able to create one person for every
member and vice versa even in the case where two elements are equal based on attribute values.

Lastly, the ccl/conda goal starting in line 30 of the :left clause handles the preference of re-using existing
families, i.e., assigning new members to existing families, over creating new families for new members. By default,
FunnyQT would always try to re-use an existing family. Thus, if the prefer-ex-family parameter is true, nothing
needs to be done. Likewise, if ?member is an existing element for which we assume she’s already assigned to some
family, we can also just stick to the default behavior but define the ?family’s ID to be its name (although it’s
probably not unique). If the first two ccl/conda clauses fail, i.e., prefer-ex-family is false and ?member is a new
member which is just going to be created by the enforcement of this relation, then we define that the ?family’s
ID must equal the IDs of the ?member and ?person. Thus, in this case and only in this case, new members force
the creation of a new family even when there already is a family with the right name.

The last two transformation relations extend the member2person relation for synchronizing between members
in the role of a family mother or dauhter and female persons, and between family fathers or sons and male
persons.

40 (member2female
41 :extends [(member2person)]
42 :left [(relationshipo prefer-parent f ?family ?member f/->mother f/->daughters)]
43 :right [(p/Female p ?person)])
44 (member2male
45 :extends [(member2person)]
46 :left [(relationshipo prefer-parent f ?family ?member f/->father f/->sons)]
47 :right [(p/Male p ?person)]))

In the :left clauses we use the relationshipo helper relation described in the beginning of this section which
chooses the right female or male role based on the preference parameter prefer-parent and the current state of
the family, i.e., by checking if the respective parental role is still unset. In the two :right clauses, we only need
to specify that the Person ?person is actually a Female or Male.

These 33 lines of transformation specification plus the 12 lines for the relationshipo helper, and two lines
for the generation of the metamodel-specific relational querying APIs form the complete functional parts of the
solution. The only thing omitted from the paper are the namespace declaration15 consisting of 5 lines of code.

15The Clojure equivalent of Java’s package statement and imports.



2.3 Gluing the Solution with the Framework

Typically, open-source Clojure libraries and programs are distributed as JAR files that contain the source files
rather than byte-compiled class files. This solution does almost the same except that the JAR contains the
solution source code, FunnyQT itself (also as sources) and every dependency of FunnyQT (like Clojure) except
for EMF which the benchmarx project already provides.

Calling Clojure functions from Java is really easy and FunnyQT transformations are no exception because
they are plain Clojure functions, too. The FunnyQT solution’s BXTool implementation FunnyQTFamiliesToPerson
extends the BXToolForEMF class. Essentially, it just has a static member T which is set to the transformation.

public class FunnyQTFamiliesToPerson extends BXToolForEMF<FamilyRegister, PersonRegister, Decisions> {
private final static Keyword LEFT = (Keyword) Clojure.read(":left");
private final static Keyword RIGHT = (Keyword) Clojure.read(":right");

private final static IFn T;

static {
final String transformationNamespace = "ttc17-families2persons-bx.core";
// Clojure’s require is similar to Java’s import. However, it also loads the required
// namespace from a source code file and immediately compiles it.
final IFn require = Clojure.var("clojure.core", "require");
require.invoke(Clojure.read(transformationNamespace));
T = Clojure.var(transformationNamespace, "families2persons");

}

All Clojure functions implement the IFn interface and can be called using invoke(). And exactly this is done
to call the transformation.

private void transform(Keyword direction) {
T.invoke(srcModel, trgModel, direction,

configurator.decide(Decisions.PREFER_CREATING_PARENT_TO_CHILD),
configurator.decide(Decisions.PREFER_EXISTING_FAMILY_TO_NEW));

}

This corresponds to a call (families2persons src trg dir prefer-parent prefer-ex-family) directly in Clo-
jure.

3 Evaluation & Conclusion
In this section, the FunnyQT solution’s test results are presented and classified as requested by the case de-
scription. Since FunnyQT’s bidirectional transformation DSL is state-based and not incremental at all (and by
design), many of the incremental tests are mostly out of scope. However, in its core use case, non-incremental
bidirectional transformations, the solution passes all tests.

BatchForward.* All tests result in an expected pass.

BatchBwdEandP.* All tests result in an expected pass.

BatchBwdEnotP.* All tests result in an expected pass.

BatchBwdNotEandP.* All tests result in an expected pass.

BatchBwdNotEnotP.* All tests result in an expected pass.

IncrementalForward.testStability This is an expected pass; re-running the transformation after a no-op
operation doesn’t change the target model.

IncrementalForward.testIncrementalMixed This is an expected fail. In this test, after transforming for-
ward, father Homer’s birthday is changed in the target model, then father Homer is deleted and immediately
re-created, and the transformation is run again. Since the transformation doesn’t consider birthdays at all,
the existing Homer with the changed birthday is still ok and not modified. Thus, he still has the changed
and not the default birthday.

IncrementalForward.testHippocraticness This is an expected pass. Empty families are of no relevance to
the transformation, so creating an empty family and re-running the transformation has no effect on the
target model.



IncrementalForward.testIncrementalMove This is an expected fail. Here, the birthdays are set manually in
the persons model. Then two members are moved in the source model and the transformation is re-executed.
This leads to creating two new persons and deleting the old ones in the target model. Of course, the two
new persons again have the default birthday.

IncrementalForward.testIncrementalDeletions This is an expected fail. Here, after the initial transforma-
tion which creates two Barts in the persons model, their birthdays are set to different values. Then, one
Bart is deleted in the family model and the transformation is re-executed. The solution deletes the wrong
one because from the perspective of the transformation, both are completely equivalent (since it doesn’t
consider birthdays).

IncrementalForward.testIncrementalRename This is an expected fail. After an intial transformation, all
birthdays are changed in the person model. Then, the source model family is renamed, and the transfor-
mation is re-executed. This leads to deletion of all persons and their re-creation with the new full names.
Obviously, the manually set birthdays are lost.

IncrementalForward.testIncrementalInserts This is an expected pass. After an intial transformation, all
birthdays are changed in the person model. Then, a new member is added to the source model family and
the transformation is re-executed. A new person is created and the others aren’t changed, i.e., they also
keep their manually set birthdays.

IncrementalForward.testIncrementalMoveRoleChange This is an expected fail. After an intial transfor-
mation, all birthdays are changed in the person model. Then, a daughter is moved to a different family as
a son, and the transformation is re-executed. This leads to the deletion of the corresponding female and
creation of a new male and the manually set birthday is lost.

IncrementalBackward.testIncrementalInsertsDynamicConfig This is kind of an unexpected fail. When
we neither prefer existing families nor assigning to parental roles, it still adds the new Seymore to an existing
family in a parental role. I haven’t found the cause yet16.

IncrementalBackward.testStability This is an expected pass; re-running the transformation after a no-op
operation doesn’t change the target model.

IncrementalBackward.testIncrementalInsertsFixedConfig This is an expected pass.

IncrementalBackward.testIncrementalMixedDynamic This is an expected fail. Here, Homer is deleted
and re-created anew, and then the transformation is re-executed with preference for child roles. Since
FunnyQT is not incremental, the model looks unchanged and Home stays in his original father role.

IncrementalBackward.testIncrementalOperational This is probably an expected pass because FunnyQT
uses standard EMF iterators which iterate elements in insertion order (unless the ELists are sorted after-
wards).

IncrementalBackward.testRenamingDynamic This is an expected fail. Since FunnyQT’s bx transforma-
tions are state-based, renaming leads to deletion and re-creation of members if only the first name changed,
or complete families including the changed members if their family name changed.

IncrementalBackward.testHippocraticness This is an expected pass. Re-running the transformation a sec-
ond time with unchanged source model won’t change the target model.

IncrementalBackward.testIncrementalDeletions This is an expected fail. Every person is deleted. There-
fore, no family is required by the transformation in the family model and we end up with an empty family
register, not with a family register still containing an empty family.

In summary, the correctness is satisfying. There is only one test which fails unexpectedly. All other fails are
expected and can hardly be solved by a non-incremental approach.

A very weak point of the solution is its performance. It is at least an order of magnitude slower than the
other solutions already integrated in the benchmarx project (BiGUL, eMoflon, BXtend, MediniQVT). Where

16The author has just become father a second time, so there have been more important things to do.



their runtimes are in the tenth of seconds or below, the FunnyQT solution takes seconds. With models in the
size of thousands of elements, you might have to wait a bit for the transformation to finish. The reason is that
FunnyQT’s bidirectional transformation DSL is built upon the relational programming library core.logic which
is not tuned for performance but for simplicity and extensibility of its implementation, and probably FunnyQT
doesn’t use it in the best possible way.

Other good points of the solution are its conciseness and simplicity. With only 52 lines of code, it is by far
the most concise solution currently integrated in the benchmarx project. And it is quite simple to understand.
The only complexities it has arise from the different alternatives depending on external parameters.

References
[ABW17] Anthony Anjorin, Thomas Buchmann, and Bernhard Westfechtel. The family to persons case. In

Transformation Tool Contest, 2017.

[Byr09] William E. Byrd. Relational Programming in miniKanren: Techniques, Applications, and Implemen-
tations. PhD thesis, Indiana University, 2009.

[Hor15] Tassilo Horn. Graph pattern matching as an embedded clojure dsl. In International Conference on
Graph Transformation - 8th International Conference, ICGT 2015, L’Aquila, Italy, July 2015, 2015.

[Hor16] Tassilo Horn. A Functional, Comprehensive and Extensible Multi-Platform Querying and Transfor-
mation Approach. PhD thesis, University Koblenz-Landau, Germany, 2016.

[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Modeling Frame-
work. Addison-Wesley Professional, 2 edition, 2008.


	Introduction
	Solution Description
	FunnyQT's Bidirectional Transformation DSL
	The Families to Persons Transformation
	Gluing the Solution with the Framework

	Evaluation & Conclusion

