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Reuse in Model Transformations

 Model transformations are the „heart-and-soul“ of MDE 

[SK03]

 Increasing adoption of MDE  Increasing need for modularity

and reuse

 Current reuse facilities seem not satisfactory [WKK+12, 

KSW+13]

 Reuse only advantageous if reused code is substantial

 Reuse introduces a dependency

 Not viable to reuse a rule that only copies a name…

 Code Generation for Refinements as a reuse problem

[HGB+17]
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Code Generation for Multiple Inheritance and

Redefinitions

 Code generator maps metaclass to interface + default

implementation as class

 Multiple inheritance is resolved to single inheritance + replication of

features

 Refinements influence the set of possible base types to inherit from

 Choice of base types independent of representation for

attributes/references
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Finding a base class

 Algorithm for selecting an appropriate base class provided

 Reversed topological sort, for instance using the algorithm of Tarjan

[Tar72]

 Java Implementation of topological sort included in case resources
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Task: Create two code generators

 Code Generator A: Represent references as properties

backed with a field

 Non-refined reference: Generate property and backing field

 Refined reference: Generate property that accesses refining

property

 Code Generator B: Represent references as methods that

lazy load the references from a database

 Non-refined reference: Call resolve

 Refined reference: Call method for refining reference

 All classes must inherit (directly or indirectly) from DBObject

 Choice of base class independent of concrete representation

of attributes and references  Reuse very important
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Example Output: Code Generator A

Code Generator A: 

Properties backed with a field

Code Generator B: 

Lazy Loading from a database
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Metamodels

 Input: Modified version of Ecore that supports refinements

 Output: Either text or code model
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Limitations

 Example instances contain only:

 One instance of EPackage

 Multiple instances of EClass with multiple base types

 Multiple instances of EReference that have

multiplicity 1

 All test models can be assumed correct (only

use redefinitions where allowed)
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Resources

 Benchmark framework and resources available
online
 Case description

 Benchmark Framework

 Metamodels

 Example Models

 Expected Results

 Reference Solution in NTL [Hin13]

 Java implementation of Topological sort

 usage not mandatory

 http://github.com/georghinkel/ttc2017LiveContest

 To submit a solution, clone the repo and create a 
Pull Request before Thursday 23:59:59 CET
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Performance Results I

 Performance for the Test Models
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Performance Results II

 Performance for model4 multiplied n times
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Conclusion

 Reuse in Model Transformations

 Reuse complex logic

 Define and reuse transformation skeletons

 Use case: Code generation in the presence of multiple inheritance

and refinements

 Benchmark framework with many resources available

 http://github.com/georghinkel/ttc2017LiveContest

 To submit a solution, clone the repo and create a Pull Request 

before Thursday 23:59:59 CET
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THANK YOU FOR YOUR ATTENTION

hinkel@fzi.de
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