
F
Z

I F
O

R
S

C
H

U
N

G
S

Z
E

N
T

R
U

M
IN

F
O

R
M

A
T

IK

The TTC 2017 Live Contest on Transformation 

Reuse in the Presence of Multiple Inheritance 

and Redefinitions
Georg Hinkel



Reuse in Model Transformations

 Model transformations are the „heart-and-soul“ of MDE 

[SK03]

 Increasing adoption of MDE  Increasing need for modularity

and reuse

 Current reuse facilities seem not satisfactory [WKK+12, 

KSW+13]

 Reuse only advantageous if reused code is substantial

 Reuse introduces a dependency

 Not viable to reuse a rule that only copies a name…

 Code Generation for Refinements as a reuse problem

[HGB+17]

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 2



Code Generation for Multiple Inheritance and

Redefinitions

 Code generator maps metaclass to interface + default

implementation as class

 Multiple inheritance is resolved to single inheritance + replication of

features

 Refinements influence the set of possible base types to inherit from

 Choice of base types independent of representation for

attributes/references

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 3



Finding a base class

 Algorithm for selecting an appropriate base class provided

 Reversed topological sort, for instance using the algorithm of Tarjan

[Tar72]

 Java Implementation of topological sort included in case resources

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 4



Task: Create two code generators

 Code Generator A: Represent references as properties

backed with a field

 Non-refined reference: Generate property and backing field

 Refined reference: Generate property that accesses refining

property

 Code Generator B: Represent references as methods that

lazy load the references from a database

 Non-refined reference: Call resolve

 Refined reference: Call method for refining reference

 All classes must inherit (directly or indirectly) from DBObject

 Choice of base class independent of concrete representation

of attributes and references  Reuse very important

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 5



Example Output: Code Generator A

Code Generator A: 

Properties backed with a field

Code Generator B: 

Lazy Loading from a database

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 6



Metamodels

 Input: Modified version of Ecore that supports refinements

 Output: Either text or code model

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 7



Limitations

 Example instances contain only:

 One instance of EPackage

 Multiple instances of EClass with multiple base types

 Multiple instances of EReference that have

multiplicity 1

 All test models can be assumed correct (only

use redefinitions where allowed)

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 8



Resources

 Benchmark framework and resources available
online
 Case description

 Benchmark Framework

 Metamodels

 Example Models

 Expected Results

 Reference Solution in NTL [Hin13]

 Java implementation of Topological sort

 usage not mandatory

 http://github.com/georghinkel/ttc2017LiveContest

 To submit a solution, clone the repo and create a 
Pull Request before Thursday 23:59:59 CET

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 9

http://github.com/georghinkel/ttc2017LiveContest


Performance Results I

 Performance for the Test Models

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 10



Performance Results II

 Performance for model4 multiplied n times

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 11



Conclusion

 Reuse in Model Transformations

 Reuse complex logic

 Define and reuse transformation skeletons

 Use case: Code generation in the presence of multiple inheritance

and refinements

 Benchmark framework with many resources available

 http://github.com/georghinkel/ttc2017LiveContest

 To submit a solution, clone the repo and create a Pull Request 

before Thursday 23:59:59 CET

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 12

http://github.com/georghinkel/ttc2017LiveContest


THANK YOU FOR YOUR ATTENTION

hinkel@fzi.de

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 13



References

[SK03] S. Sendall and W. Kozaczynski, “Model transformation the heart and soul of 

model-driven software development,” Tech. Rep., 2003.

[WKK+12] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and W. 

Schwinger, “Fact or fiction–reuse in rule-based model-to-model transformation 

languages,” in Theory and Practice of Model Transformations, Springer, 2012, 

pp. 280–295.

[KSW+13] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and W. 

Schwinger, “Reuse in model-to-model transformation languages: Are we there 

yet?” Software & Systems Modeling, pp. 1–36, 2013.

[HGB+17] G. Hinkel, T. Goldschmidt, E. Burger, and R. Reussner, “Using Internal Domain-

Specific Languages to inherit Tool Support and Modularity for Model 

Transformations,” Software & Systems Modeling, pp. 1–27, 2017.

[Hin13] G. Hinkel, “An approach to maintainable model transformations using an 

internal DSL,” Master’s thesis, Karlsruhe Institute of Technology, 2013.

[Tar72] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on 

computing, vol. 1, no. 2, pp. 146–160, 1972.

7/21/2017 The TTC 2017 Live Contest on Transformation Reuse in the Presence of Multiple Inheritance and Redefinitions 14


