
Model Optimisation for Feature�Class allocation

using MDEOptimiser: A TTC 2016

Submission

Alexandru Burdusel

Ste�en Zschaler

Department of Informatics, King's College London

szschaler@acm.org

May 13, 2016

Abstract

In this paper, we present a solution for the TTC 2016 challenge case

on class�responsibility assignment. Our solution is built on our early

prototype of MDEOptimiser, a tool integrating meta-heuristic search

into model-driven engineering.

1 Introduction

Search-based software engineering (SBSE) is about using optimisation tech-
niques for automating the search for (near-)optimal software designs [3]. Using
search-based techniques allows the exploration of much larger design spaces than
could be explored manually by developers. As a result, better solutions can be
identi�ed more quickly. Model-driven engineering (MDE) o�ers unique bene�ts
to SBSE because it already comes with good techniques for expressing design
spaces (aka meta-models) and for deriving new solution candidates from exist-
ing ones (aka model transformations). There is, then, a need to support the
expression and execution of optimisation tasks in the context of MDE. The cur-
rent TTC case study (asking to �nd an optimal assignment of interdependent
features to classes as part of an object-oriented design process) is an excellent
challenge example for demonstrating such capabilities.

In this paper, we show how we have tackled this problem with our MDEOp-
timiser tool. Our tool is still very young, so while we can solve the problem
and explain our solution in this paper, we place substantial focus on the lessons
learned from this exercise and how these will inform future development of the
tool.

The remainder of this paper is structured as follows: We begin with a brief
overview of the challenge case and our tool. Section 4, then, presents our solution

1



to the challenge case, which we evaluate in Sect. 5 based on the criteria de�ned
with the case. Section 6 discusses lessons learned from this experiment and
highlights future research to be undertaken. Section 7 concludes the paper.

2 Case Study Description

This submission addresses the TTC �Class Responsibility Assignment Case�
provided by Fleck et al..1 In this section, we give a brief overview of this
challenge case to provide context for the remainder of the paper. A more detailed
description of the case study is available in the full case description on GitHub.

The challenge case is about a key step in object-oriented design: assigning
responsibilities to classes. Speci�cally, given a set of features (methods and
attributes) and their dependencies (data dependencies between methods and
attributes and functional dependencies between methods) we are tasked to �nd:

1. A set of classes with unique names; and

2. An allocation of features to these classes that minimises dependencies
between classes.

3 Overview of MDEOptimiser

MDEOptimiser2 has been developed to allow expressing search and optimisa-
tion problems in an MDE context. It considers search spaces to be described
by meta-models so that candidate solutions are represented by individual mod-
els [4]. Search-space exploration is performed by deriving new models from
existing models; these transitions are encoded using Henshin transformations.
Objective functions can be expressed as model queries or by giving arbitrary
Java code (e.g., by calling out to an external simulation engine). MDEOpti-

miser provides an Xtext-based domain-speci�c language (DSL) for expressing
an optimisation problem using these basic ingredients and a Java framework for
running optimisation algorithms and generating a (near-)optimal result model
(or population of models for multi-objective problems).

4 Solution Overview

We separate the problem into two sub-problems, which we are going to solve
sequentially:

1. Find an optimal allocation of features to a suitable set of classes;

2. Ensure all classes have unique names.

1https://github.com/martin-fleck/cra-ttc2016/
2https://github.com/szschaler/mde_optimiser

2

https://github.com/martin-fleck/cra-ttc2016/
https://github.com/szschaler/mde_optimiser


Class

Attribute

MethodFeature

NamedElement

name : String

ClassModel
encapsulates

isEncapsulatedBy

dataDependency

functionalDependency

Figure 1: Metamodel describing the search space of the class�responsibility
assignment problem

The �rst problem is a search problem, which we will solve with MDEOpti-

miser. The second problem is a simple transformation problem, which we solve
using a simple iteration expressed in Xtend. In the following two sub-sections,
we discuss each solution in turn. The complete solution is also available on
SHARE [1]. The code of the solution is also available on GitHub.3

4.1 Solving the search problem

Three things are needed for any search problem:

1. A de�nition of the search space and a corresponding encoding for individ-
ual candidate solutions;

2. A means of exploring the search space by moving from existing solution
candidates to new ones; and

3. A set of objective functions enabling the comparison of candidate solutions
along a number of dimensions.

In this section, we describe each of these aspects for our solution using
MDEOptimiser.

4.1.1 Search space de�nition

Figure 1 shows the metamodel included with the problem description of the
TTC 2016 challenge case. Problem instances are speci�ed as instances of this
metamodel containing no Class instances. The goal is to (a) create a suitable
number of Class instances, and (b) allocate Features to these classes (using
the encapsulates reference) so as to optimise cohesion and coupling.

MDEOptimiser runs optimisation directly on models. That is, individual
candidate solutions will be encoded as instances of the metamodel in Fig. 1

3https://github.com/szschaler/mdeoptimise_ttc16

3

https://github.com/szschaler/mdeoptimise_ttc16


Figure 2: Model evolvers used for the challenge case

without using any other encoding. Thus, the metamodel provides us with a
complete de�nition of the search space.

4.1.2 Model evolvers

MDEOptimiser uses Henshin transformation rules to specify how to derive
new candidate solutions from given ones. At this point, the tool only supports
�mutation�-type derivation of new candidate solutions; that is derivations that
take a single model and produce a single new model. We call these mutators
�model evolvers�. Figure 2 shows the model evolvers used for the challenge case.
When the search is executed, the engine will randomly pick an applicable evolver
every time a new candidate solutions needs to be derived.

These rules are similar, but not identical to the rules given with the challenge
case. In particular, we made the following changes:

1. No names. The rules do not match against or modify the names of any
model elements. Ensuring uniqueness of names will be performed as a
separate processing step, explained in Sect. 4.2.

2. Additional rules. The challenge case only included two rules (creating a
class and assigning a feature). This was su�cient for the MoMOT-based
[2] implementation, which uses sequences of rule applications to encode
candidate solutions. Therefore, they have access to the `transformation
history' of any candidate model and can modify past transformation steps
to �nd optimal solutions. In contrast, MDEOptimiser only keeps the
model resulting from the transformation application. It cannot exchange a
past transformation step, so needs additional evolvers to ensure it can fully
explore the search space. As a result, we needed to add a rule for moving

4



features from one class to another. We also included a rule for deleting
empty classes to enable the search to produce more compact models.

3. Additional negative application conditions. We found that we needed to
introduce additional negative application conditions. In particular, it was
necessary that rule assignFeature would only match against unassigned
features. This is not automatically implied by marking the isEncapsulatedBy
edge as �create�. Instead, we need to specify an explicit �forbid� edge
to create a negative application condition. A peculiarity of the Hen-
shin diagram editor means that we cannot create such an edge directly
for isEncapsulatedBy, but instead had to de�ne it for the inverse edge
encapsulates.

4. No simple class creation. The original createClass rule, which created
an empty class turned out to be ine�cient. By changing it to a rule which
creates a class and immediately assigns a previously unassigned feature to
it, the search became substantially more e�cient.

4.1.3 Objective functions

As candidate solutions are encoded as models, objective functions can simply be
encoded as model queries for the challenge case. We used the following objective
functions:

• Minimise number of unencapsulated features;

• Minimise number of empty classes; and

• Maximise CRA (a combination of cohesion and coupling metrics as de�ned
in the challenge case).

In principle, all of these metrics could be expressed in OCL. Our present
prototype does not yet support expression of objective functions directly in
OCL so that we had to write them in Xtend code, resulting in somewhat more
cumbersome expressions than necessary. Integrating proper OCL support is an
important piece of future work for MDEOptimiser.

4.1.4 Putting it all together

Figure 3 shows how the CRA problem is speci�ed inMDEOptimiser. In Line 3,
we de�ne the search space by indicating the relevant meta-model. Lines 5
to 7 de�ne the �tness functions to be used and Lines 9 to 12 indicate how
candidate solutions can be evolved into new candidate solutions. Figure 4
shows Xtend code to execute the search based on this model. We �rst in-
stantiate a model provider, which in our case simply provides the one model
that the current case is working on. Next, we instantiate the MDEOptimiser

OptimisationInterpreter, providing the model from Fig. 3, a speci�c search
algorithm (here a simple variant of non-dominated sorting based search), and

5



Figure 3: Speci�cation of the CRA optimisation problem in MDEOptimiser

Figure 4: Invocation of MDEOptimiser for the CRA problem

the model provider. Invoking execute on this interpreter �nally runs the search
and returns the results.

As we are using a population-based algorithm, as is typical for multi-objective
problems like CRA, we receive a population of models from which we will need
to pick one. Some of the models in the population may not be valid as they may
contain unassigned features (we treat feature assignment only as an objective
function during the optimisation). From the remaining solutions, we pick the
one that has the best CRA value.

4.2 Post-processing

Finally, we need to ensure all classes in the �nal model have unique names.
This can be easily achieved by a simple post-processing step as shown in Fig. 4
(Lines 102�.): we iterate over the list of classes in the models generated and set
their names to a unique string by appending a running counter.

5 Evaluation

In this section, we evaluate our solution against the criteria de�ned in the chal-
lenge case, namely completeness & correctness, optimality, complexity, �exibil-
ity, and performance. We divide these into product criteria and process criteria,
which we discuss in the following two sub-sections.

6



5.1 Product criteria

In this section we evaluate our transformation against the problem models given
in the challenge case and report the results of the metrics for completeness &
correctness, optimality, and performance. As search-based algorithms involve
a certain amount of randomness, we have run the transformation 10 times on
each input model and report the average time taken as well as the CRA for the
best model found across these ten attempts.

It is worth noting that there can be quite substantial variation in the quality
of the models produced. It seems that our optimiser currently gets easily stuck
in local optima. Investigating the precise reasons for this remains as future
work, but three candidate issues present themselves for initial investigation:

1. Ine�cient search algorithm. We currently use a very simple search algo-
rithm based on ideas from non-dominated sorting. It is very possible that
this algorithm is ine�cient. We are planning to replace this hand-coded
implementation with standard implementations as, for example, available
in the MOEA framework4.

2. No support for breeding: Breeding�that is, creating a new candidate so-
lution by intermixing aspects of two good parent solutions�is not yet
supported inMDEOptimiser. This makes it more di�cult for the search
algorithm to escape from local maxima and means that there may be large
parts of the search space that are never reached.

3. Lack of randomness in Henshin's rule application algorithm: Our experi-
ments clearly show that Henshin deterministically picks a match to apply
when there is more than one possibility. As a result, the search algorithm
is more likely to go over the same ground again and again, making it less
e�cient.

Table 1 shows an overview of the results obtained for each of the input models
provided. We ran two con�gurations for each model: First, we ran a search with
100 generations and a population size of 100 models (Con�guration I). Second,
we ran a search with 1,000 generations and a population size of 50 models
(Con�guration II). Con�guration I uses the same parameters as Fleck's original
solution5, so we show their CRA values for comparison.

Note that for the less complex models we could already obtain reasonable
results with a smaller number of generations and a smaller population size. For
models B and C, our CRAs in Con�guration I are better than Fleck's results.
For model A, we are very close to their CRA value. Larger populations or more
generations did not improve these values. Indeed, it appears from the table that
we get worse results for Con�guration II for models B and C. We believe that
this is a result of the search getting stuck in local optima, helped by the fact that
a smaller population size means more potentially interesting search routes are

4http://moeaframework.org/
5https://github.com/martin-fleck/cra-ttc2016/blob/master/MOMoT_solution/

TTC2016_CRA_MOMoT.pdf

7

http://moeaframework.org/
https://github.com/martin-fleck/cra-ttc2016/blob/master/MOMoT_solution/TTC2016_CRA_MOMoT.pdf
https://github.com/martin-fleck/cra-ttc2016/blob/master/MOMoT_solution/TTC2016_CRA_MOMoT.pdf


Table 1: Product-criteria measurements
Model Con�guration Avg. time Best CRA Fleck

A I 60s 751.2ms 1.6667 1.75
II 5m 03s 437.5ms 1.6667

B I 4m 14s 603.7ms 1.2667 -.2333
II 10m 30s 907.1ms 1.0944

C I 6m 46s 346.5ms 0.3363 -6.4714
II 29m 23s 386.2ms -1.1137

D I 8m 01s 991.6ms -44.3097 -23.6338
II (over 6 runs) 1h 47m 17s 675.0ms -3.684490

E I 9m 50s 966.5ms N/A -66.6555
II N/A N/A

weeded out earlier. However, for model D, Con�guration II produces a result
with a much improved CRA, but at a substantial time cost. For model E, we
were unable to complete the full experimental run by the submission deadline,
as each individual run can take over four hours to complete. In an earlier run
(with a slightly older version of the code base) the tool found a model with a
CRA of −0.4556 after 4h 19m 10s 509ms (1,000 generations of 50 models). We
have yet to recreate this scenario with the current code base.

5.2 Process criteria

The complexity of our solution is comparatively low as MDEOptimiser is
a tool dedicated to the expression and execution of search problems. Con-
sequently, the CRA challenge case is a very natural problem for our tool to
tackle. In particular, all that is needed is:

1. A model provider, which loads the initial models and makes them available
to the optimiser;

2. A set of Henshin rules specifying how candidate solutions can be derived
from existing candidate solutions;

3. A set of objective functions written by implementing a speci�c Java inter-
face; and

4. A speci�cation of the optimisation problem as a whole, expressed in our
own dedicated domain-speci�c language.

All of these parts are quite straightforward to write, as is the code required
to combine them and trigger execution of the actual search. Perhaps the most
complex bit to get right is the set of Henshin rules; we found that we needed to
make a substantial number of changes over the originally provided set of rules to
ensure a reasonably e�cient exploration of the search space. Good debugging
facilities would have been helpful in this process, but remain for future work.

8



Given that our tool is a very early prototype, there are a number of accidental
complexities that make expressing search problems a little more di�cult than
strictly necessary. In particular, we do not currently support objective functions
to be expressed directly as OCL model queries, requiring them to be expressed in
Java instead. However, by using Xtend and a number of simple helper functions,
we have made the expression of these queries su�ciently easy to be workable
for this case study.

Being completely declarative, our solution is also quite �exible: Adding a
new objective function simply requires adding a class implementing the corre-
sponding interface and referencing it from the optimisation speci�cation. Simi-
larly, additional rules for evolving candidate solutions can be added quickly and
easily.

6 Lessons learned

We have learned a number of lessons from applying MDEOptimiser to the
TTC'16 challenge case. These lessons will in�uence our future work onMDEOp-

timiser:

• Avoiding local optima. Our current implementation seems to get easily
stuck in local optima. We have already discussed in Sect. 5.1 a number of
things we will investigate to avoid this.

• Additional features required. Being a very new tool, MDEOptimiser is
missing a number of important features. For example, we are currently
not supporting Henshin rule parameters, which would have given us an
opportunity to ensure name uniqueness in one go. Similarly, we do not
yet support constraints for the speci�cation of valid solutions. Constraints
may have made the search more e�cient, in particular for the more com-
plex input models where a large proportion of the �nal population consists
of invalid models with unassigned features.

• Systematic development of optimisations. Not having support for rule
parameters in the tool forced us to separate the overall transformation into
two phases. It could be argued that this is actually a more sensible design.
This raises the issue of identifying techniques for systematic development
of optimisation-based model transformations.

• Debugging and testing support. Debugging and testing optimisation-based
transformations is particularly di�cult because they create a very large
number of intermediate models and because of their stochastic nature.
Current techniques for debugging and testing transformations provide only
insu�cient support for this type of transformation.

• Di�erences between evolution rules required for di�erent search techniques.
In solving the challenge case, we had to develop Henshin rules that di�er
signi�cantly from the ones presented in the challenge case. Some of these

9



di�erences seem to be because our search algorithm works on models di-
rectly rather than on transformation chains. It will be important to better
understand how di�erences in the search algorithm a�ect the shape of the
transformation rules required.

7 Conclusion

In this paper, we have reported on our solution to the 2016 TTC challenge
case on class�responsibility assignment using our tool MDEOptimiser. While
it was clear from the start that our very new tool would �nd the problem
challenging, we have been encouraged by the solution we have been able to
present as well as by the relatively short amount of time it has taken us to put
this together. It is clear that much remains to be learned, understood, and
improved. However, these are promising indicators of the potential of running
search and optimisation algorithms directly on models. We have been able to
identify a number of lessons learned as well as challenges to inform our future
work on MDEOptimiser.

References

[1] Alexandru Burdusel and Ste�en Zschaler. Online mdeoptimiser
demo. http://is.ieis.tue.nl/staff/pvgorp/share/?page=

ConfigureNewSession&vdi=ArchLinux64_MDE-Optimiser.vdi, 2016.

[2] Martin Fleck, Javier Troya, and Manuel Wimmer. Marrying search-based
optimization and model transformation technology. In Proc. 1st North
American Search Based Software Engineering Symposium (NasBASE'15),
2015. Preprint available at http://martin-fleck.github.io/momot/

downloads/NasBASE_MOMoT.pdf.

[3] Mark Harman and Bryan F Jones. Search-based software engineering. In-
formation and Software Technology, 43(14):833�839, 2001.

[4] Ste�en Zschaler and Lawrence Mandow. Towards model-based optimisation:
Using domain knowledge explicitly, 2016. Under review.

10

http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_MDE-Optimiser.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_MDE-Optimiser.vdi
http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf

	Introduction
	Case Study Description
	Overview of MDEOptimiser
	Solution Overview
	Solving the search problem
	Search space definition
	Model evolvers
	Objective functions
	Putting it all together

	Post-processing

	Evaluation
	Product criteria
	Process criteria

	Lessons learned
	Conclusion

