An NMF solution to the Class Responsibility Assignment
Case

Georg Hinkel
FZ1 Research Center of Information Technologies
Haid-und-Neu-Strafte 10-14, 76131 Karlsruhe, Germany
hinkel@fzi.de

Abstract

This paper presents a solution to the Class
Responsibility Assignment (CRA) case at the
Transformation Tool Contest (TTC) 2016 us-
ing the .NET Modeling Framework (NMF).
The goal of this case was to find a class
model with high cohesion but low coupling
for a given set of attributes and methods
with data dependencies and functional de-
pendencies. The degree in which a given
class model fulfills these properties is mea-
sured through the CRA-Index. We propose
a general-purpose code solution and discuss
how this solution can benefit from incremen-
tality. In particular, we show what steps are
necessary to create an incremental solution us-
ing NMF Expressions and discuss its perfor-
marnce.

1 Introduction

The Class Responsibilities Assignment (CRA) prob-
lem is a basic problem in an early stage in software
design. Usually, it is solved manually based on expe-
rience, but early attempts exist to automate the so-
lution of this problem through multi-objective search
[BBL10]. Given the exponential size of the search
space, the problem cannot be solved by brute force.
Instead, often genetic search algorithms are applied.
The advantage of approaches such as genetic search
algorithms or simulated annealing is that they can find
a good solution even when the fitness function is not

Copyright © by the paper’s authors.
private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ
Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

Copying permitted for

well understood. In the case of the CRA, however,
the fitness function is relatively simple. Therefore, we
refrained from using these tools, as we think they can-
not unveil their potential in this case. Further, the
cost of generality often is a bad performance, which
may make such an approach not suitable for large in-
put models, for example when a large system design
should be reconsidered. Therefore, we created a fully
custom solution using general-purpose code without
the background of a framework and are interested to
see how we compare to search tools based on e.g. ge-
netic algorithms in this case.

Furthermore, we detected that a lot of computa-
tional effort is done repeatedly in our solution. This
yields a potential of further performance improve-
ments through the introduction of incrementality, i.e.
insertion of buffers that are managed by the evaluation
system in order to avoid performing the same calcula-
tions multiple times when the underlying data has not
changed in between.

The results show that our batch solution has a good
performance, solving the largest provided input model
within few seconds and creating output models with a
good CRA score. Further, the solution could be incre-
mentalized with very few changes to the code, showing
the possibilities of our implicit incrementalization ap-
proach NMF Expressions. However, the performance
results for the incremental version of the solution were
discouraging as the largest model took almost one and
a half minutes to complete.

Our solution is publicly available on GitHub! and
SHARE?.

The remainder of this paper is structured as follows:
Section 2 gives a very brief overview on NMF'. Section 3
presents our solution. Section 4 discusses the potential
of incremental execution for our solution. Section 5

Ihttp://github.com/georghinkel/TTC2016CRA
%http://is.ieis.tue.nl/staff/pvgorp/share/?page=
ConfigureNewSession&vdi=XP-TUe_TTC16_NMF.vdi

evaluates our approach before Section 6 concludes the
paper.

2 The .NET Modeling Framework

The .NET Modeling Framework (NMF) [Hinl6] is a
framework designed to support model-driven engineer-
ing on the .NET platform. It allows users to generate
code for Ecore metamodels and load and save EMF
models in most cases (i.e., when the Ecore metamodel
refrains from using generic types, factories or custom
XML handlers). For this, a given Ecore metamodel is
transformed into NMF’s own meta-metamodel NMeta
for which code can be generated.

Besides this, NMF contains the implicit incremen-
talization system NMF Expressions which allows de-
velopers of model analyses to run their analyses incre-
mentally without changing the code. This means that
incremental execution can be implemented at practi-
cally no cost and without degrading understandability
or maintainability of the analysis as almost no changes
have to be performed.

3 The Class Responsibilities Assign-
ment Case Solution

The NMF solution to the CRA case is divided into
four parts: Loading the model, creating an initial cor-
rect and complete solution, optimization and serializ-
ing the resulting model. Therefore, the optimization
is entirely done in memory. We first give an overview
on the solution concept and then describe the steps in
more detail.

3.1 Overview

The general idea of our solution is to create an initial
complete and correct model which is incrementally im-
proved in a greedy manner until no more improvements
can be found. For this, we apply a bottom-up strategy
and start with a class model where each feature is en-
capsulated in its own class and gradually merge these
classes until no improvement can be found. Here, we
risk that we may get stuck in a local maximum of the
CRA-index. The solution could be further extended
to apply probabilistic methods such as simulated an-
nealing to overcome local maxima, but the results we
achieved using the greedy algorithm were quite satis-
factory and we therefore did not take any further step
in this direction.

The idea of the optimization is to keep a list of
possible class merges and sort them by the effect that
this merge operation has to the CRA index. We then
keep applying the most promising merge as long as
this effect is positive. Here, merging two classes ¢; and
c; means to create a new class c;; that contains the

features of both classes. The new class is then added
to the model while the old classes are removed.

We created a heuristic to estimate this effect in a
way that is computationally lightweight. First, we ob-
served that

MAI(Cij,Cij) = MAI(Ci,Ci) + MAI(Ci,Cj)
+MAI(CJ*,CZ') -‘rMAI(Cj,Cj)

and likewise for M M1I. Then, the difference in co-
hesion ACoh(c;, ¢j) when merging ¢; and ¢; to ¢;; can
be expressed as shown in Figure 1.

The effect that this merge operation has on the cou-
pling is more complex, which is why we apply an inex-
act heuristic. This heuristic simply assumes that the
merge will not have any impact on other classes than
c; or c;. Since these two classes are no longer present,
the coupling between them is removed. Thus, we have
an estimated effect on the coupling ACou(c;, ¢;) as

_ MAI(ci,¢;) MAI(¢j,¢)
ACoules, e;) = == [M5]] A
MMI(ci,cj) _ MMI(c;,ci)

MM =1) MM - 1)

We then estimate the effect ACRA(c;, ¢;) of merg-
ing classes ¢; and c¢; simply as ACoh(c,c;) —
ACou(c;, ¢;).

Using this heuristic, we do not need to compute
the CRA metric every time we perform merges of two
classes. Instead, our heuristic is an estimate for the
derivation of the fitness function when a merge opera-
tion is performed.

3.2 Loading the Model

Loading a model in NMF is very straight-forward. We
create a new repository, resolve the file path of the
input model into this respository and cast the single
root element of this model as a ClassModel. This is
depicted in Listing 1.

1 |var repository = new ModelRepository();

2 |var model = repository.Resolve(args[0]);

3 | var classModel = model.RootElements [0] as
ClassModel;

Listing 1: Loading the model

For this to work, only a single line of code in the
assembly metadata is necessary to register the meta-
model attached to the assembly as an embedded re-
source.

ACoh(c;,c;) =

MAI(C,L',CZ') + MAI(Ci7Cj) + MAI(Cj,Ci) —|—MAI(Cj,Cj) . MAI(C“CZ) . MAI(CJ',C]')
(IMi] + [M;]) (1] + [A51) | M| As | M; | A5
MMI(CZ',CZ‘)+MMI(Ci,Cj)+MM[(Cj,Ci)+MMI(Cj,Cj) MMI(CZ',Ci) MMI(C]‘,C]')

(IMi| + |MG1)(IMs] + [M| = 1)

MM = 1) [MI(1M] - 1)

Figure 1: The impact of merging classes c; and c¢; on the Coherence Ratio

3.3 Creating an initial complete and correct

solution

To create an initial complete and correct solution, we
create a class for each feature in the class model, de-
picted in Listing 2.

OO Uk W~

foreach (var feature in classModel.Features)

{

}

var featureClass = new Class()
{

Name = "C" + feature.Name
3
featureClass.Encapsulates.Add(feature);
classModel.Classes.Add(featureClass);

Listing 2: Encapsulating every feature in its own class

3.4 Optimization

To conveniently specify the optimization, we first spec-
ify some inline helper methods to compute the MAI
and MMI of two classes. The implementation for MAI
is depicted in Listing 3, the implementation of MMI is
equivalent.

1

Tk W N

var mai =

new Func<IClass, double>((cl_i,
cl_j) =>
cl_i.Encapsulates.0fType<Method>()
.SelectMany(m => m.DataDependency)
.Intersect(cl_j.Encapsulates)
.Count ());

IClass,

Listing 3: Helper function for MAI

With the help of these functions, we generate the

set of merge candidates, basically by generating the
cross product of classes currently in the class model.
This is depicted in Listing 4. The filter condition that
the name of the first class shall be smaller than the
name of the second class is only to make sure we create
each tuple of different classes only once. For each such
tuple, we also save all intermediate values that will be
required to calculate the estimate ACRA.

00~ Uk WN -

10

11

var possibleMerges =

from cl_i in classModel.Classes

from cl_j in classModel.Classes

where cl_i.Name.CompareTo(cl_j.Name) < 0O
select new

{

cl_j,

cl_i.Encapsulates.0fType<Method>().
Count (),

M_j = cl_j.Encapsulates.0fType<Method>().
Count (),

A_i = cl_i.Encapsulates.O0fType<IAttribute>().
Count (),

12

A_j = cl_j.Encapsulates.0fType<IAttribute>().
Count (),
MAI_ii = mai(cl_i, cl_i),
MAI_jj = mai(cl_j, cl_j),
MAI_ij = mai(cl_i, cl_j),
MAI_ji = mai(cl_j, cl_i),
MMI_ii = mmi(cl_i, cl_i),
MMI_jj = mmi(cl_j, cl_j),
MMI_ij = mmi(cl_i, cl_j),
MMI_ji = mmi(cl_j, cl_i)
};
Listing 4: Identify possible merges
To determine which merge candidate is most

promising, we further include two helper methods
atLeastOne as ¢ — max{i, 1} and combinationCount
as i — max{1,i(i — 1)} that will be used in several
places in order to avoid division by zeroes.

To rate the candidates for merge operations, we as-
sign an effect to them, which is exactly our aforemen-
tioned heuristic ACRA(c;, ¢;). The implementation is
depicted in Listing 5. If any denominator is zero, the
nominator will also be zero and we can safely avoid
divisions by zero by ensuring that the denominator is
at least one.

1

ST W N

N}

10
11

12

var

prioritizedMerges = possibleMerges.Select(m

=>

new

{

.

Merge = m,
Effect =
// Delta of Cohesion based on data
dependencies +
(n.MAT_ii + m.MAT_ij + m.MAI_ji + m.MAT_jj)
/ atLeastOne((m.M_i + m.M_j) * (m.A_i +

m.A_j)) - (m.MAI_ii / atLeastOne(m.M_i *
m.A_i)) - (m.MAI_jj / atLeastOne(m.M_j
* m.A_j))

// Delta of Cohesion based on functional
dependencies

(m.MMI_ii + m.MMI_ij + m.MMI_ji + m.MMI_jj)
/ combinationCount ((m.M_i + m.M_j)) - (m
.MMI_ii / combinationCount(m.M_i)) - (m.
MMI_jj / combinationCount(m.M_j)) +

// Delta of Coupling between C_i and C_j

(m.MAI_ij / atLeastOne(m.M_i * m.A_j)) + (m.
MAI_ji / atLeastOne(m.M_j * m.A_i)) + (m
.MMI_ij / atLeastOne(m.M_i * (m.M_j - 1)
)) + (m.MMI_ji / atLeastOne(m.M_j * (m.
M_i - 1)))

OrderByDescending(m => m.Effect);

Listing 5: Sorting the merges by effect

Finally, we use this sorted set of possible merges
and perform the merge operations. Here we make use
of the lazy evaluation of queries in .NET, which means
that the creation of tuples, assigning effects and sort-
ing is performed each time we access the query results.

We do this repeatedly until the most promising merge
candidate has a estimated effect ACRA below zero.
This is depicted in Listing 6.

1 | var nextMerge = prioritizedMerges.FirstOrDefault
O3

2 var classCounter = 1;

3 |while (nextMerge != null && nextMerge.Effect > 0)

4 |1

5 Console.WriteLine ("Nowymerging, {0} and {1}",
nextMerge.Merge.Cl_i.Name, nextMerge.Merge.
Cl_j.Name);

6 var newFeatures = nextMerge.Merge.Cl_i.

Encapsulates.Concat (nextMerge.Merge.Cl_j.
Encapsulates) .ToList () ;

7 classModel.Classes.Remove (nextMerge.Merge.Cl_i)

8 classModel.Classes.Remove (nextMerge.Merge.Cl_j)

9 var newClass = new Class() { Name = "C" + (
classCounter++) .ToString () };

10 newClass.Encapsulates.AddRange (newFeatures);

11 classModel.Classes.Add(newClass);

12 nextMerge = prioritizedMerges.FirstOrDefault ();

13 |}

Listing 6: Performing merge operations

However, there is a potentially counter-intuitive is-
sue here. The problem is that NMF takes composite
references very seriously, so deleting a model element
from its container effectively deletes the model ele-
ment. This in turn means that each reference to this
model element is reset (to prevent the model point-
ing to a deleted element). This includes the refer-
ence encapsulatedBy and therefore also its opposite
encapsulates, which means that as soon as we remove
a class from the container, it immediately loses all of
its features. Therefore, before we can delete the classes
c; and cj, we need to store the features in a list and
then add them to the newly generated class.

3.5 Serializing the resulting model

NMF requires an identifier attribute of a class to have
a value, in case that the model element is referenced
elsewhere. Therefore, we need to give a random name
to the class model.

1 classModel.Name = "Optimized Class_ Model";
2 |repository.Save(classModel, Path.ChangeExtension(
args [0], ".Output.xmi"));

Listing 7: Saving the resulting model

Afterwards, the model can be saved simply by
telling the repository to do so. This is depicted in
Listing 7.

4 The potential of incrementality

The heart and soul of our solution is to repeatedly
query the model for candidates to merge classes and
rank them according to our heuristic. Therefore, the
performance of our solution critically depends on the
performance to run this query. If the class model at

a given point in time contains |C| classes, this means
that |C|? merge candidates must be processed, whereas
only 2|C| merge candidates are removed and |C| — 2
new merge candidates are created in the following
merge step. Therefore, if we made sure we only pro-
cess changes, we could change the quadratic number
of classes to check to a linear one, improving perfor-
mance.

Therefore, an idea to optimize the solution would be
to maintain a balanced search tree with the heuristics
for each candidate as key and dynamically update this
tree when new merge candidates arise.

However, we suggest that an explicit management
of such a search tree would drastically degrade the un-
derstandability, conciseness and maintainability of our
solution. In most cases, these quality attributes have
a higher importance than performance since they are
usually much tighter bound to cost, especially when
performance is not a critical concern. Furthermore, it
is not even clear whether the management of a search
tree indeed brings advantages since the hidden imple-
mentation constant may easily outweigh the benefits
by a asymptotically better solutions.

This problem can be solved using implicit incre-
mentalization approaches such as NMF Expressions.
Indeed, our solution has to be modified only at a few
places and the resulting code can be run incrementally.
In particular, two more namespace imports are neces-
sary, the definition of the helper functions mai and
mmi have to be of type ObservingFunc and have to be
called explicitly with an Evaluate method. Further-
more, the following line has to be added before Listing
6:

1 | var prioritizedMergesInc = prioritizedMerges.
AsNotifiable () ;

Listing 8: Activating incrementality

This switches on incremental execution using NMF
Expressions. To use this incremental version of the
query, the contents of Listing 6 also have to be adjusted
to use the variable prioritizedMergesInc instead of
prioritizedMerges. Our uploaded solution contains
two different main classes where the difference can be
seen very clearly.

Unfortunately, the dependency graph generated in
this case is very large, since the mathematical compu-
tation of ACRA has a complex AST. NMF Expres-
sions is not yet ready to detect that in this case, the
best solution would be to compute this heuristic in
batch mode and concentrate only on managing the
search tree. We are working in this direction, but this
approach is not yet implemented. Right now, NMF
Expressions instead uses dynamic dependency graph
that is a 1:1 mapping of the AST multiplied with the
data going through. Hence, the dynamic dependency

Input A Input B Input C Input D Input E
Correctness ° ° ° ° °
Completeness ° ° ° ° °
CRA-Index 2 1.667 1.541 -15.82 -27.83
Model Deserialization 192ms 185ms 163ms 160ms 155ms
Optimization 17.4ms 27.2ms 78.8ms 712.6ms 5,278.2ms
Model Serialization 11.2ms 11.6ms 12.4ms 10.0ms 10.8ms
Total Time ‘ 220.6ms 223.8ms 254.6ms 882.6ms 5,443.8ms
Table 1: Summary of Results for batch mode solution
‘ Input A Input B Input C Input D Input E
Correctness ° ° ° ° .
Completeness) ° . ° °
CRA-Index 1.167 1.667 0.782 -15.43 -31.47
Optimization ‘ 328ms 798ms 2,815ms 16,135ms 85,233ms

Table 2: Summary of Results for incremental solution

graph is very large so that its traversal is way more
computational expensive than the savings due to the
better asymptotical complexity.

5 Evaluation

The results achieved on an Intel Core i5-4300 CPU
clocked at 2.49Ghz on a system with 12GB RAM are
depicted in Table 1 for the solution in batch mode and
Table 2 for the solution in incremental mode. Each
measurement is repeated 5 times. The times for model
deserialization and -serialization are identical for both
cases and are only depicted once.

Furthermore, the performance figures indicate that
in batch mode, at least for the smaller models, the
optimization takes much less time than loading the
model. Even for the largest input models provided,
the optimization completes in a few seconds.

The models created by the incremental solution are
a bit different due to a different ordering when there
are multiple candidates with the same estimated effect
to the CRA-index. The incremental solution shows
much worse performance than the batch mode version
and therefore, incrementality, at least using NMF Ex-
pressions, does not seem profitable in this case.

The solution consists of 110 lines of code (+3 for the
incrementalized one), including imports, comments,
blank lines and lines with only braces plus the gen-
erated code for the metamodel and one line of meta-
model registration. Therefore, we think that the solu-
tion is quite good in terms of conciseness.

A downside of the solution is of course that it is very
tightly bound to the CRA-index as fitness function and
does not easily allow arbitrary other conditions to be
implemented easily. For example to fix the number of

classes, one would have to perform a case distinction
whether the found optimal solution has more or less
classes and then either insert empty classes or con-
tinue merging classes. This is not obvious, but for this
concrete example, we think it is acceptable.

6 Conclusion

In this paper, we presented our solution to the CRA
case at the TTC 2016. The solution shows the po-
tential of simple derivation heuristics. The results in
terms of performance were quite encouraging. We also
identified a good potential of incrementality in our so-
lution. We were able to apply incrementality by chang-
ing just a few lines of code. However, the resulting so-
lution using an incremental query at its heart is much
slower, indicating that the overhead implied by man-
aging the dynamic dependency graph in our current
implementation still outweighs the savings because of
the improved asymptotical complexity. We are work-
ing on the performance of our incrementalization ap-
proach and will use the present CRA case as a bench-
mark.

References

[BBL10| Michael Bowman, Lionel C Briand, and Yvan
Labiche. Solving the class responsibility as-
signment problem in object-oriented analy-
sis with multi-objective genetic algorithms.
Software Engineering, IEEE Transactions
on, 36(6):817-837, 2010.

[Hinl6] Georg Hinkel. NMF: A Modeling Framework
for the .NET Platform. Technical report,

Karlsruhe, 2016.

