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Abstract

In this paper we describe a so-
lution for the Transformation Tool
Contest 2016 (TTC’16) Class Re-
sponsibility Assignment (CRA) case
study using Sigma, a family of Scala
internal Domain-Specific Languages
(DSLs) that provides an expressive
and efficient API for model consis-
tency checking and model transforma-
tions. Since the Class Responsibil-
ity Assignment problem is a search-
based problem, we base our solu-
tion on multi-objective genetic algo-
rithms. Concretely, we use NSGA-
III and SPEA2 to minimize the cou-
pling between classes’ structural fea-
tures and to maximize their cohesion.

1 Introduction
In this paper we describe our solution for
the TTC’16 Class Responsibility Assign-
ment (CRA) case study [FTW16] using the
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Sigma [KCF14]. The goal of this case study is
to find high-quality class diagrams from exist-
ing responsibility dependency graphs (RDG).
The RDGs only contain a set of methods
and attributes with functional and data re-
lationships among them. The CRA prob-
lem is essentially about deciding where the
different responsibilities in the form of class
structural features (i.e. operations and at-
tributes) belong and how objects should inter-
act by using those operations [BBL10]. Since
the design space of all possible class dia-
grams grows exponentially with the size of
the RDG model [FTW16] (i.e. the number
of structural features), the problem could be
solved using search-based optimization tech-
niques [CLV07]. Concretely, the use of multi-
objective genetic algorithms seems to provide
an efficient solution for the CRA problem as
demonstrated by Bowman et al. [BBL10].

In this paper, we therefore present a solu-
tion to the CRA problem using Sigma and
multi-objective genetic algorithms. We use
Sigma to transform the input RDG diagram
into a search-based problem which is then
solved by a genetic algorithm. In the imple-
mentation we use NSGA-III and SPEA2 al-
gorithms from the MOEA framework1. The
MOEA Framework is a free and open source
Java library for developing and experimenting

1http://www.moeaframework.org/
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with multi-objective evolutionary algorithms
(MOEAs) and other general-purpose multi-
objective optimization algorithms [Had16].

Sigma is a family of Scala2 internal DSLs
for model manipulation tasks such as model
validation, model to model (M2M), and model
to text (M2T) transformations. Scala is
a statically typed production-ready General-
Purpose Language (GPL) that supports both
object-oriented and functional styles of pro-
gramming. It uses type inference to combine
static type safety with a “look and feel” close
to dynamically typed languages. Furthermore,
it is supported by the major integrated devel-
opment environments bringing EMF modeling
to other IDEs than traditionally Eclipse (the
solution was developed in IntelliJ IDEA3).

Sigma DSLs are embedded in Scala as
a library allowing one to manipulate mod-
els using high-level constructs similar to the
ones found in the external model manipu-
lation DSLs. The intent is to provide an
approach that developers can use to imple-
ment many of the practical model manipu-
lations within a familiar environment, with
a reduced learning overhead as well as im-
proved usability and performance. The solu-
tion is based on the Eclipse Modeling Frame-
work (EMF) [SBPM08], which is a popular
meta-modeling framework widely used in both
academia and industry, and which is directly
supported by Sigma.

In this particular TTC’16 case study, the
main problem is in solving an optimization
problem rather than a transformation prob-
lem. Sigma is therefore only used to trans-
form input RDG model into an optimization
problem and to transform the problems’ solu-
tions into class diagrams.

The complete source code is available on
Github4. In the Appendix A and B we provide
steps how to install it locally as well as how to
run it on the SHARE environment.

2http://scala-lang.org
3https://www.jetbrains.com/idea/
4https://github.com/fikovnik/

ttc16-cra-sigma

2 Solution Description
The core of this case study is to transform a
RDG model into a high-quality class digram
(cf. Figure 1).

To consider the quality of a class digram,
two common software engineering metrics are
used: coupling (the number of external depen-
dencies) and cohesion (the number of internal
dependencies). The two metrics can be further
combined in one, single quality metric called
CRA-Index, which simply subtracts the cou-
pling from cohesion. The case study authors
provide a set of utility functions that can com-
pute all these metrics from a class digram in-
stance and therefore we do not need to concern
ourselves by their precise definitions.

The outline of the solution proposed in this
paper is as follows:
1. Loads the input RDG model from a given

XMI file.
2. Transforms the RDG model into MOEA

problem instance.
3. Runs the MOEA solver using either

NSGA-III or SPEA2 algorithms.
4. From the possible solutions (which are

part of a Pareto optimal front cf. below),
selects the one with the highest CRA-
Index.

5. Transforms the selected solution into class
digram.

6. Saves the resulting class diagram into
XMI file.

2.1 Transformations

An optimization problem defines a search
space, or the set of possible solutions together
with one or more objective functions. In our
case the search space are all the valid class di-
agrams that can represent given RDG model.
The objectives are: (1) to minimize coupling,
and (2) to maximize cohesion.

The functions that compute coupling and
cohesion ratios from a class diagram are part
of the case study description. What remains
is to find the way how to represent the RDG
model as a vector of variables that can be used
in a evolutionary algorithm to find a solution.
We use a simple integer vector where the in-
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Figure 1: Class Model metamodel

to the partitioning of a set of labeled features (operations and attributes) into non-empty classes so that every feature is
included in exactly one class. The number of possible partitions, i.e., classes, is given by the Bell number (cf. Equation 1).
The nth of these numbers, Bn, counts the number of different ways a given a set of n features can be divided into classes.
If there are no features given (B0), we can in theory produce exactly one partition (the empty set, ;). The order of the
classes as well as the order of the features within a class does not need to be considered as the semantic of a class diagram
does not depend on that order.
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✓
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k

◆
Bk
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(1)

Considering the first Bell numbers, which are shown below (cf. sequence A0001102 in the OEIS online database for integer
sequences), we can see that the number of partition possibilities grows exponentially and is already quite high for a low
number of features. For example, an instance where you need to assign 15 features to an unknown amount of classes
already yields 1382958545 different possibilities.

1 , 1 , 2 , 5 , 15 , 52 , 203 , 877 , 4140 , 21147 , 115975 , 678570 , 4213597 , 27644437 ,
190899322 , 1382958545 , 10480142147 , 82864869804 , 682076806159 , 5832742205057 ,
51724158235372 , 474869816156751 , 4506715738447323 , 44152005855084346 ,
445958869294805289 , 4638590332229999353 , 49631246523618756274 , . . .

In order to solve the case, as described in the next section, several techniques may be applied by the contestants.

2 Case Description
In this case study we propose a simplified version of the CRA problem. Contestants are given a set of methods and
attributes as well as dependencies between them. Such a structure is also referred to as responsibilities dependency graph
(RDG). Based on the RDG, the goal is to generate a high-quality class diagram (CD) model. The purpose is therefore to
create a RDG2CD model transformation, where the RDG must evolve into a CD, categorized as an endogenous model
transformation [MVG06], since both the input and output models conform to the same metamodel.

Figure 1 depicts the common metamodel that is used to represent both, the RDG and the output CD. The RDG is
the subset of the metamodel containing only the features and their dependencies, and is represented in black, while the
additional class and relationships needed to produce a CD are represented in green. The concepts depicted in the metamodel
are summarized as follows:

Class Classes represent classes as known from object-oriented programming and modeling languages. A class hereby
encapsulates certain functionality aspects in terms of methods, which in turn use data stored in attributes of instances
of the same or other classes. In this sense, classes serve as a container object for behavioral features (methods) and
data features (attributes).

2http://oeis.org/A000110

Figure 1: RDG and class model metamodel
dex corresponds to the feature index in the
input RDG model and the value corresponds
to the index of a class in the resulting class
diagram. The bound of each vector element
is bounded between 0 and the number of fea-
tures −1 (since we use 0-based indexing). For
example, a vector (3, 5, . . .) represents a solu-
tion in which first feature belongs to fourth
class, second feature to sixth class, and so on
and so forth. Figure 2 shows a further exam-
ple of this representation on the example in-
put/output model pair from the case descrip-
tion [FTW16].

The advantage of this representation is that
it can be easily mapped to MOEA decision
variables. Also, each feature will always be as-
signed to (encapsulated by) some class. There-
fore, the second validation constraint all fea-
tures provided in the input model must be en-
capsulated by a class, will be always satisfied
without any additional logic.

Concretely, in the MOEA framework,
we have created a Problem class, called
CRAProblem. The integer vector is
used to define the decision variables, their
types (i.e. integers) and bounds (i.e.
0 . . . number of features − 1). The number of
decision variables corresponds to the number
of features in the input RDGmodel. The num-
ber of objectives is always two, the first one for
coupling and the second one for cohesion. The
method instantiating new solution instances
looks as follows:

override def newSolution() = {
val s = new Solution(numVars, numObjs)
(0 until numVars) foreach (x =>
s.setVariable(x, newInt(0, numVars - 1))

)
s // return the new instance

}
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Figure 3: Example input/output model pair with quality characteristics: (a) input model in abstract syntax, (b) output model
in concrete syntax, (c) measures for output model.

Optimality With optimality the quality of the correctly generated models is evaluated, i.e., the CRA-Index of the output
model. The higher the CRA-Index the better the quality of the output model. Here, the reviewers need to rank the
solutions in relation to the other solutions provided and give them points on a scale between 1 and 10, where 1 refers
to the worst (possible) solution and 10 refers to the best solution. To support this ranking, we provide the CRA-Index
of our reference solution in the evaluation spreadsheet and a program that calculates the CRA-Index for a given class
diagram.

Complexity With complexity we measure the efforts needed to provide search capabilities for good solutions as well as
to evaluate the solutions based on the given metrics. For instance, this involves to evaluate how much effort has been
invested to augment the provided rules, develop orchestration specifications such as providing an explicit control flow
for the rules, implement search algorithms as transformations, or to implement transformations to dedicated encodings
used for performing the search and back. Here, again, the reviewers need to rank the solutions in relation to the other
solutions provided and give them points on a scale between 1 and 10, where 1 refers to the worst (possible) solution
and 10 refers to the best solution.

Flexibility Flexibility measures how easy it is to modify the given solution to support additional/other quality metrics
besides coupling, cohesion and the CRA-Index. For this criteria, reviewers need to estimate the effort it takes to
integrate new objectives (such as fixing the number of classes to a given value) and give the provided solutions points
on a scale between 1 and 10, where 1 refers to the worst (possible) solution, i.e., the solution where the most effort is
needed, and 10 refers to the best solution, i.e., the integration can be done quickly.

Performance The performance evaluation consists of the measured execution time, i.e., the time it takes the provided
solution to generate a high-quality output model for a given input model. Please note that reading the input model
and writing the output model is not considered to be part of this performance evaluation. For Java-based solutions,
we suggest using Java’s internal time measurements, i.e., the method java.lang.System.nanoTime(), which
is also used by the Apache Commons Lang’s4 StopWatch class. All performance values must be given exact to the
millisecond, e.g., 03:02.426 meaning 3 minutes, 2 seconds and 426 milliseconds or in total 182426 milliseconds.

All criteria, except the complexity and flexibility of the solution, are evaluated separately on all provided input models.

4https://commons.apache.org/proper/commons-lang/
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Figure 2: Example of the Solution

Next to providing a method to instanti-
ate new instances of solutions for the prob-
lem, we need to also define the evalua-
tion of a solution to compute the objec-
tives. This involves two steps: (1) trans-
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forming the solution into a class diagram
(2) using the provide calculateCoupling
and calculateCohesion utility functions
to compute the metrics. In code this is im-
plemented as:

override def evaluate(s: Solution) = {
// transformation
val m = solutionToClassModel(initModel, s)
// minimize coupling
s.setObjective(0,calculateCoupling(m))
// maximize cohesion
s.setObjective(1,-calculateCohesion(m))

}

The negation of the cohesion ratio is due to
the fact that MOEA only works on minimiza-
tion problems and thus we need to negate the
objective value to convert from maximization
into minimization. The code that does the
transformation is shown in Listing 1. This is
the main code that uses Sigma.

def solutionToClassModel(
initModel: ClassModel,
s: Solution) = {

// create a new model as a copy
// of the input one
val m = initModel.sCopy
// get problem vector (v: Array[Int])
val v = EncodingUtils.getInt(solution)
// create new classes
val classes = (0 to v.max) map (x =>

Class(name = s"Class $x")
)

// assignment
v.zipWithIndex.foreach {

case (cIdx, fIdx) =>
m.features(fIdx)
.isEncapsulatedBy = classes(cIdx)

}

// add non-empty classes
m.classes ++= classes filter (x =>
!x.getEncapsulates.isEmpty

)
m

}

Listing 1: Solution transformation

Finally, we define a new type, Solver,
which is a function RDG → ClassDiagram.
The solver is responsible (1) to find the Pareto
optimal front of all possible solutions (subject
to solver configuration), and (2) to select the
solution from that set which has the highest
CRA-Index. The Pareto optimal front refers

to optimal solutions whose corresponding vec-
tors are non-dominated by any other solution
vector [BBL10] and it can be found by MOEA
Executor. For example using the NSGA-III
algorithm, we find the non-dominated vector
as:

new Executor()
.withProblemClass(
classOf[CRAProblem],
initModel)

.withAlgorithm("NSGAIII")

.withProperty("populationSize", 64)

.withMaxEvaluations(10000)

.run()

The individual solutions in this vector are first
converted to the class model using Listing 1
and we use the given calculateCRA func-
tion to find the highest CRA. To have a bet-
ter chance to find a good solution, we run each
algorithm 10 times. The properties of each al-
gorithm are defined based on the suggestion
by Bowman et al. [BBL10].

The code is organized into three classes in
src/main/scala folder:
— CRAProblem defines the CRA problem in

terms of MOEA problem
— Solvers preconfigures the two used algo-

rithms for the finding the non-dominated
solution vector, and finally

— Main that assembles the solution together
into an executable application.

3 Evaluation
In this section we provide an evaluation of our
solution following the categories given by the
case study description. We leave the complex-
ity and flexibility characteristics to be evalu-
ated by reviewers.

Completeness & Correctness. The solu-
tion always converts a valid input RDG into a
class model. The three constraints that were
imposed by the solution description are solved
as follows:
— Every class must have a unique name. The

new classes are created in a loop that iter-
ates over a number range. Part of the class
name is the iteration variable and thus it
must be always unique.
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— All features provided in the input model
must be encapsulated by a class. This has
been already explained in the previous sec-
tion. This is a property of the problem
mapping we have chosen.

— There cannot be any empty classes. We
explicitly filter out empty classes.

Optimality. The following table shows the
cohesion and coupling rations as well as the
resulting CRA-Index:

Input Cohesion Coupling CRA
A 4 1 3
B 6.5 2.5 4
C 6.37 3.63 2.74
D 4.83 7.94 -3.11
E 7.38 17.99 -10.60
F 9.85 44.74 -34.88

Performance. The solution completion time
from the SHARE environment for the input
models is presented in the table below:

Input Time [s]
A 19.17
B 34.78
C 72.53
D 300.49
E 1110.74
F 6289.75
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A Install and Run Locally
The only requirements for running the solution
is git and sbt5. To reproduce the benchmark
simply execute these steps in a command line:

$ git clone \
https://github.com/fikovnik/ttc16-cra-sigma

$ cd ttc16-cra-sigma
$ ./build.sh
$ ./run.sh

B Install and Run on SHARE
On the share environment we provide ready to
be run solution. Simply log to the SHARE VM
remoteArchLinux64-TTC16_SIGMA with
ttcuser/ttcuser as user name/password
and run the following

$ cd ttc16-cra-sigma
$ ./run.sh

5simple-built-tool cf. http://www.scala-sbt.
org/
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