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Abstract. This paper presents a solution to the TTC2016 challenge
”The Class Responsibility Assignment Case”. Our solution uses the Hen-
shin model transformation language to specify genetic operators in a
standard genetic algorithm framework. Due to its formal foundation
based on algebraic graph transformation, Henshin is well-suited to spec-
ify fundamental change patterns for genetic operators in a declarative
manner. Adopting a simple, widely used genetic algorithm, we focus
on effective implementation strategies for the genetic operators as well
as additional operations. We analyzed the impact on our implemented
strategies on the given evaluation criteria. Without giving a definitive
recommendation of how to configure our tool, we found a drastic impact
of some configuration options on the runtime and quality of its results.

1 Introduction

Class Responsibility Assignment is one of the cases in the 2016 edition of the
Transformation Tool Contest [1]. The general goal is to produce a high-quality
object-oriented design, an aim that plays an important role in refactoring and
programming language migration scenarios. The specific task is to partition a
given set of features with dependencies between them into a set of non-empty
classes. In the formulation provided by the case authors, the starting point is a
responsibilities dependency graph (RDG), a model that specifies a set of methods
and attributes; methods can reference other methods as well as attributes. The
task is to specify a transformation from RDGs to simple class models so that the
output class models exhibit desirable coherence and coupling properties. These
properties can be measured using the CRA index, a metric that combines coher-
ence and coupling into a single number, thus allowing to evaluate the quality of
created class diagrams in a convenient manner.

In this paper, we present our solution for the Class Responsibility Assignment
Case based on the Henshin model transformation language [2] and a standard
framework for genetic algorithms [3]. The main idea is to use graph-based model
transformation rules to specify the genetic operators included in the framework,
mutation and cross-over, and further operations. The resulting specification is
largely declarative and targets a high abstraction level. In particular, we show
how Henshin’s advanced features, such as rule amalgamation and application
conditions, enable a compact and precise specification.



This specification aligns well with genetic algorithms, which provide a robust
and well-proven foundational search-based framework. Genetic algorithms have
been successfully applied to global optimization problems like scheduling [4]
and engineering tasks [5]. In particular, their modularity, configurability, and
ultimately their flexibility in encoding problem domains make them appealing
for software engineering problems, such as the one considered in this paper. We
specified all optimization steps using Henshin rules.

While Henshin has been used in the context of search-based software engi-
neering before [6], the distinctive feature of our solution is a set of specialized
strategies addressing the Class Responsibility Assignment Case. We provide cus-
tom strategies for the implementation of the genetic operators, the creation of the
initial population, and domain-specific post-processing operations. As we show
in our preliminary evaluation based on the provided input models, these strate-
gies have a substantial effect on the runtime of the algorithm and the quality
of the produced result. We provide our solution using the SHARE platform [7];
the source code is available at BitBucket [8].

The rest of this paper is structured as follows. In Sec. 2, we introduce the
necessary background. In Sec. 3, we present our solution. In Sec. 4, we show and
discuss our evaluation results. In Sec. 5, we conclude.

2 Background

2.1 Henshin

Henshin [9, 2] is a model transformation language for the Eclipse Modeling Frame-
work. It provides a visual editor for the specification of model transformations,
an API for the execution of these transformations, and tool support for analyses
such as state space exploration and critical pair analysis.

The Henshin language is based on the paradigm of algebraic graph transfor-
mations. In this paradigm, the basic building blocks for the definition of model
transformations are rules. A rule comprises a left-hand side (LHS), specifying a
graph pattern to be matched in the input model, and a right-hand side (RHS),
specifying an intended change in case that the LHS can be matched. The LHS
can be extended using positive and negative application conditions (PACs and
NACs) to require the presence or absence of additional patterns in the input
model. A rule can contain a set of multi-rules. Each multi-rule specifies a change
to be executed as often as possible, effectively providing a for-each operator.

In its visual representation, the whole rule is shown as a single graph with
annotated elements. Elements tagged with 〈〈delete〉〉 are only present in the LHS;
that is, they are removed by the transformation. Elements tagged with 〈〈create〉〉
represent elements only part of the RHS, i.e., they are newly created. The an-
notation 〈〈preserve〉〉 denotes elements part of the LHS and RHS, i.e., they are
left as is when applying the rule. Elements tagged with 〈〈forbid〉〉 specify NACs,
preventing the rule from being executed when found. For multi-rule elements,
the tag is augmented with an asterisk, for instance to 〈〈preserve*〉〉. We illustrate
these concepts in Sect. 3; more examples are provided online [10, 11].



2.2 Genetic Algorithms

Genetic algorithms are a search-based optimization heuristic mimicking natural
evolution processes. In contrast to traditional optimization strategies (e.g. hill
climbing) genetic algorithms apply optimization to a whole population of possible
solutions in parallel. This exploration of several locations of the search space
combined with means for preserving the populations diversity facilitates a high
level of robustness against premature stagnation at local optima.

Following Darwin’s theory of natural selection, the optimization takes place
by a stepwise creation of new generations. A fitness function is used to quantify
the quality of each individual solution of the population. Adhering to the concept
of survival of the fittest, good solutions are mated to exchange their valuable
properties while the black sheep of the herd are left behind. In addition to this
reproduction step, similar to mother nature, random mutations may occur from
time to time. The created offspring form a new, hopefully fitter generation of
solutions which will be the basis for the next optimization run.

While genetic algorithms in general are modular, extendable and highly con-
figurable, the above concepts can be implemented by a simple genetic algorithm
as described by Goldberg [3]. Apart from the mandatory fitness function such a
basic implementation comprises three components:

– a mutation operator ensuring the diversity of the population by randomly
altering individuals,

– a crossover operator simulating the natural process of mating individuals
and exchanging their genetic information,

– and a selection mechanism responsible for enforcing survival of the fittest.

3 Solution

We implemented our solution on top of a generic framework for genetic algo-
rithms available at GitHub [12], providing custom implementations for the ini-
tialization step, the mutation and crossover operators, and the fitness function
used during the crossover and selection phases.

Initialize
3 strategies

Evolve (n times)

SelectMutate
4 strategies

Cross-Over
3 strategies

Fix result

Post-
process

Fig. 1. Overview

Fig. 1 shows a high-level overview. During initialization, the starting pop-
ulation is generated. When the initialization is finished, evolution is started,
using the maximum number of evolution steps n as an input parameter. To
produce new individuals, each evolution step proceeds in four stages: First, the



individuals are mutated. By that, the number in the intermediate population
of result models doubles. Second, during cross-over, the strongest individuals
are combined with randomly chosen ones from the whole population. Third,
the resulting individuals are post-processed. Finally, the best ten percent of all
individuals and additional randomly chosen ones are selected as result of the
evolution step. The genetic algorithm terminates after the n-th evolution step,
followed by a step called fix results. As fitness function, we applied the CRA
index, using the implementation provided along with the case description [1].

We now describe our solution in detail. In Sec. 3.1, we describe our three
strategies to generate a starting population. In Sec. 3.2, we describe our four
mutation strategies, involving the rearrangement of feature encapsulations and
class creations and deletions. In Sec. 3.3, we describe our three crossover strate-
gies, mainly differing by their mixture of randomness and preservation of existing
properties. In Secs. 3.4 and 3.5, we describe post-processing and fix result.

3.1 Initialization

The goal during initialization is to obtain a set of class models that can be
manipulated during the evolution phase. Since the input models initially arrive
in the form of a RDG, basically a set of features, the goal is to ensure that
each feature is encapsulated by a class. Please note that we do not consider any
additional validity requirements until after the evolution phase (see Sect. 3.5).

Strategies We provide three strategies to establish that each feature is as-
signed to a class. The first is to create one dedicated class for each feature. The
second is to create one class and assign all features to it, rendering it a “God
class“. The third is a combination of the first two strategies. We first describe our
implementation of the first strategies, then how we ensure that multiple different
input models can be produced, which eventually leads us to our third strategy.

The rules for strategies 1 and 2, shown in Fig. 2, harness Henshin’s multi-
rule concept (see Sect. 2.1). Rule createClassPerFeature creates a new class for
each feature in the class model and encapsulates the feature in that class. In
the resulting model, there are as many features as there are classes. In other
words, the resulting model contains the maximum number of classes, considering
only models with non-empty classes. Rule allFeaturesInOneClass creates a single
“God class“ in the class model. All features get encapsulated in that class.

Usually, a start population comprises multiple models. The number of in-
dividuals can be configured by setting a population size. The population size
remains constant throughout the complete algorithm. This value is an influen-
tial factor for the runtime and the quality of the results. In both strategies, we
produce variants of the initial input model by performing one random mutation
step (see Sec. 3.2), a typical method to produce an initial population. To explore
the solution space more broadly, we provide a third strategy, mixed, that pro-
duces m models by applying the first strategy to produce the first

⌈
m
2

⌉
models

and the second strategy to produce the remaining ones. For instance, to estab-
lish a population size of 10, it produces 5 variants of the God-class model and 5
variants of the class-per-feature class model.



Fig. 2. Rules to create the initial population

3.2 Mutation

A mutation is one of the two genetic operators to produce new individuals. The
mutation of a single individual may range from tiny to tremendous changes with
a significant effect on the fitness score. While small changes may advance the
approximation of a local maximum, major changes can provide access to new
regions in the solution space that can help discover another maximum.

Strategies We specified four mutation strategies using the rules depicted in
Fig. 3. The first three correspond to one of the rules each; the fourth strategy is
produced from a combination of multiple rules. Our strategies are not mutually
exclusive. In our evaluation, we experimented with all 16 possible combinations.

The rule joinSelectedClasses joins two classes. To this end, it moves all fea-
tures from the to-be-deleted class to the remaining class. In addition, the deletion
of the containment reference removes to-be-deleted class from the class model.

The rule moveSelectedFeature moves a single feature between two classes by
deleting and creating its encapsulation references. A single application of this
rule yields a minimal change, which would require many mutations to explore a
wider area in the state space, especially for big input models. To accelerate this
process, the rule is applied a random number of times during a single mutation.

The rule moveAttributeToReferencingMethod moves an attribute referenced
by a method to the method’s class, unless the attribute is referenced by another
method in its own container class. Note that, in contrast to the first two mu-
tations, this mutation is not a “blind“ one, but designed to intuitively improve
fitness by advancing cohesion and reducing coupling.



Fig. 3. Rules for the mutation operator.

The fourth mutation randomSplitClass splits a single class in several new
ones and randomly distributes the features of the former class among them, so
that each new class obtains at least one feature. The mutation consists of two
elementary rules, createClass (depicted in Fig. 4) and moveSelectedFeature. We
orchestrate these rules programmatically.

3.3 Crossover

Crossover is the second genetic operator. The core principle is to take two parent
solutions and create a child from their combined genetic material. In our case, we



Fig. 4. Utility rules for crossover (and mutation) operators.

can cross two parent models by alternately selecting a class in one of them and
copying that class to the child model. The feature assignment of the class is
reproduced in the child model. To keep all three models in sync, features are
deleted from the parent models immediately when they are assigned to a class in
the child model. This process is repeated until no features remain in the parent
models and each feature in the child model is assigned to a class. The original
parent models are then restored to their original state to enable further mating.

Strategies. In our case, since the genetic material of the parent models is
directly represented, it is tempting to “breed“ children with desirable features.
Our crossover strategies differ in the degree in which they rely on this idea.
Each strategy determines which classes are selected during mating. First, in
randomClassCrossover, the class to be reproduced in the child is chosen ran-
domly. Second, in classWithBestCohesionCrossover, the classes with the best
cohesion value are selected, ignoring coupling. Third, classWithBestCohesion-
AndCouplingCrossover considers coupling as well. However, it is important to
notice that cohesion and coupling values in the parent models are not directly
transferable to the child model. The reason is that the parents are changed within
the process; the resulting values in the newly created class model will differ.

We have implemented these strategies using the simple rules shown in Fig. 4,
orchestrating them in our Java implementation. The rules deleteFeature and
deleteClass are configured in a way that disables the default check for dangling
edges. This setting defines whether a transformation is applied or not if the
transformation would leave behind dangling edges in the context of element
deletions. The shown rules delete features and classes even if they have incoming
or outgoing edges, which are removed automatically by the Henshin interpreter.



3.4 Post-processing

In a dedicated step before the selection of the fittest individuals, we can har-
ness domain knowledge to improve the candidate individuals. Specifically, the
mutation rule moveAttributeToReferencingMethod shown in Fig. 3 improves the
fitness rating in most cases, as we have observed in our experiments. We provide
a configuration option to apply this mutation on each individual created dur-
ing an evolution step. In the rare case that this optimization produces a less fit
individual, the optimization is ignored during selection.

Fig. 5. Rules for fix result.

3.5 Fix result

The goal of fix result is to turn the result model into a valid class model, satisfying
the constraint that each class must have a unique name. We noticed that the
enforcement of this requirement is best postponed to a dedicated clean-up phase
since it might otherwise interfere with the optimization.

To ensure that each class has a unique name, we apply the rules shown Fig. 5
on the result model. The nameFix rule comprises a multi-rule that iterates over
all pairs of a class and an associated feature. For each of these pairs, the class
name is set to the value of the feature name, by matching the feature’s name
attribute in the LHS, storing its value in a parameter called featureName, and
propagating the value to the class name attribute in the RHS.

In general, it may occur at this point that the class model exhibits empty
classes, that is, classes without an assigned feature. For instance, a class created
during the random split mutation might not have obtained an associated feature.
Rule deleteEmptyClasses specifies that all empty classes are deleted from the
class model. It specifies this deletion using a multi-rule. The dangling condition
(see Sec. 3.3) ensures that classes with an associated feature are not affected by
this rule, since their deletion would leave behind dangling edges.

Since the remaining classes are generally non-empty, each class has finally
obtained a name: that of one of its members, chosen nondeterministically, ac-
cording to the principle of “last write wins“. Conversely, since each feature is
assigned to exactly one class, the resulting class names are unique.



4 Preliminary Evaluation

In our evaluation, we investigated the impact of our different strategies, focusing
on the quality of the produced results and the performance behavior during the
creation of these results. We measured the quality in terms of the CPA index,
as stipulated in the case description [1]. We determined performance behavior
by measuring the runtime of the algorithm to produce the result models. To
study the effects of our strategies in isolation, we varied the treatment among
all possibilities within one category (initialization, mutation, cross-over, post-
processing), using a fixed configuration for the remaining configuration param-
eters. In each case, we studied the effect on the provided example models 1–5.
We ran all experiments on a Windows 7 system (3.4 GHz; 8 GB of RAM).

We used the following parametrization in our experiments: In all experiments,
we used the same population size (5), number of runs (10), and post-processing
configuration (activated). In the case of the initialization and cross-over strate-
gies, we considered 20 evolution steps. In the case of mutation, we only considered
10 evolution steps, since the relevant configuration space was considerably larger.
By visual inspection of barplots, we observed that these configuration were usu-
ally sufficient for the different runs in one experiment to converge. Runner classes
with the full configurations are provided as part of our implementation [8], al-
lowing the experiments to be reproduced with little effort.

4.1 Influence of Selected Initializations

To investigate the influence of the selected initializations we applied the three
strategies described in subsection 3.1: oneClassPerFeature, allFeaturesInOneClass
(“God class“), and mixed, a combination of the first two strategies.

Input models A and B: For input model A, in the allFeaturesInOneClass
case, four evolution iterations are required to reach the optimal CRA of 3.0. In
the oneClassPerFeature and mixed cases, the same value is always reached in
the first evolution step. Similarly, for input model B, the optimal CRA value of
3.0 was reached in the first evolution step in the oneClassPerFeature and mixed
cases. The allFeaturesInOneClass initialization strategy shows a flat develop-
ment at a median CRA index of 1.9.

Input model C, D, and E: After 20 iterations, the CRA values for input
model C were only negligibly different, amounting to a median of 1.0 for allFea-
turesInOneClass, 1.1 for oneClassPerFeature and 0.9 for mixed. In all three
strategies, an upward trend was emerging around the cut-off point. We observed
a similar trend for input model D as well. In this example, it is important to
notice that after the oneClassPerFeature initialization, a CRA of 0.95 in mean
is reached, while the mean in both other cases amounts to 0.19. Finally, for in-
put model E, with the oneClassPerFeature initialization, we observed the best
mean value of 1.9, but the difference is small again, amounting to 1.7 in the
allFeaturesInOneClass and 1.6 in the mixed case. Interestingly, at this point in
the measurement, in all cases a similar number of classes is reached (around 5).
A prolonged run could offer additional evidence in this case.
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Fig. 6. CRA of input model A depending on the selected initialization allFea-
turesInOneClass, oneClassPerFeature or mixed (from left to right).
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Fig. 7. CRA of input model B depending on the selected initialization allFea-
turesInOneClass, oneClassPerFeature or mixed (from left to right).
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Fig. 8. CRA of input model C depending on the selected initialization allFea-
turesInOneClass, oneClassPerFeature or mixed (from left to right).

In sum, oneClassPerFeature offered a moderate benefit for input models B
and D, whereas all strategies were roughly on par in the other scenarios. While
additional experiments with larger models and longer evolution runs are required
for a more complete picture, we used oneClassPerFeature as initialization strat-
egy in our further experiments.

4.2 Influence of Mutation Strategies

The effect of the mutation strategies is shown in Fig. 16. Since strategies in this
category are orthogonal and can be combined, we experimented with each of the
16 possible combinations.
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Fig. 9. CRA of input model D depending on the selected initialization allFea-
turesInOneClass, oneClassPerFeature or mixed (from left to right).
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Fig. 10. CRA of input model E depending on the selected initialization allFea-
turesInOneClass, oneClassPerFeature or mixed (from left to right).

Input models A and B. In the case of models A and B, the chosen mutation
strategy did not affect the quality of the result; the CRA value was 3 in all
executions. Even though the runtime for input model A took up to twice as long
depending on the mutation strategy, the absolute runtime is still relatively low.

Input models C, D, and E. In the case of input models C, D, and E,
a clear picture emerges. Based on their runtime behavior as well as the CRA
index of the produced results, two clusters of mutation strategy combinations
can be identified, a strong and a weak one. Remarkably, one of the strategies,
joinSelectedClasses is contained in each of the strong combinations. A possible
explanation of this observation is that none of the other strategies is suitable to
reduce the number of classes to a significant extent, which becomes an important
drawback in our chosen initialization strategy that creates a large set of classes.
The CRA scores lay constantly in a range between 0 and 2.

4.3 Influence of Crossover Strategies

We studied result quality and runtime under varying crossover strategies, exper-
imenting with the random, coherence- and coherence/coupling-based crossover
strategies according to our description in Sec. 3.3. In addition, we studied the
effect of deactivating the cross-over operator altogether.

We omit a visualization of our results here as we did not observe any differ-
ences that would justify a decisive judgement. In the case of models A and B,
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Fig. 16. Effect of mutation strategies on CRA and runtime in the example models 1–5.



we measured CRA values of 3.0 for input model A and B right from the start.
Therefore, the crossover strategy did not play any role at all. But even for input
models C and D, the determined CRA values differed only marginally, usually
amounting to values between 0.0 and 1.0. This also applies for the runs where
the crossover strategy was deactivated.

In conclusion, it is indicated that our crossover strategies only make a minor
contribution to the quality of the results. Even if its not possible to give a
clear advice which crossover strategy to prefer, it is worth pointing out that
the classWithBestCohesionCrossover strategy performed best for input model
D while classWithBestCohesionAndCouplingCrossover gave the best result for
input models C and E.

4.4 Discussion

While giving a definitive usage recommendation is outside the scope of this pa-
per, our measurements give us a first preliminary reference for the configuration
of our implementation. The initialization with oneClassPerFeature constantly
achieved preferable CRA values. Regarding the selected mutation features, we
strongly recommend to include joinSelectedClasses. Generally, activating the
moveAttributeToReferencingMethod post-processing option has proven valuable.
Finally, the selected crossover strategy turned out to be negligible in our exper-
iments. Yet it remains unclear if this observation indicates a weakness of our
crossover strategies or a strength of our initialization and mutation strategies.
We are optimistic that comparing our implementation with other solutions to
the Class Responsibility Assignment Case will lead to interesting insights in this
respect.

5 Further Improvements

Despite a couple of first insights, we are only at the beginning of understanding
the tuning of our technique. A longer series of experiments is required to provide
more reliable evidence than given so far. Furthermore, while the transformation
rules in our solution are simple, a formal proof that the produced models are
always valid is left to future work. With regards to performance, the most evident
improvement we see is based on the embarrassingly parallel nature of search-
based techniques [13]. An implementation that distributes the individual rule
applications across a multi-kernel architecture seems a suitable opportunity for
a performance optimization.
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