An NMF solution to the Train Benchmark Case
at the TTC 2015

Georg Hinkel' and Lucia Happe?

! Forschungszentrum Informatik (FZI)
Haid-und-Neu-Strafe 10-14, Karlsruhe, Germany
hinkel@fzi.de
2 Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5, Karlsruhe, Germany
lucia.kapova@kit.edu

Abstract Model validation in model-driven development gains in im-
portance as the systems grow in size and complexity. In this situation
an efficiency of validation execution and an immediate feedback whether
a recent manual edit operation broke a validation rule is desirable. To
increase efficiency, incremental model validation tries to minimize the
proportions of the model that have to be rechecked by reusing previous
validation results. As a benchmark for efficiency of validation tools, the
Train Benchmark Case at the Transformation Tool Contest 2015 was
created. In this paper, we present a solution using NMF Expressions,
a tool for incremental evaluation of arbitrary expressions on the .NET
platform.

1 Introduction

This paper proposes a solution for the Train Benchmark Case® at the Transfor-
mation Tool Contest (TTC) 2015. Our solution is publicly available on Code-
Plex? and SHARE? and built upon the .NET Modeling Framework® (NMF) and
especially on NMF Ezpressions”. NMF is a tool suite on the .NET platform
to support model-driven engineering. Its metamodel NMeta is largely compat-
ible with Ecore so that Ecore metamodels can be transformed to NMeta with
a compliant XMI format, i.e. models according to an Ecore metamodel can be
deserialized using the transformed NMeta metamodel.

NMF Ezxpressions is designed for incremental evaluation of arbitrary (lambda
calculus) expressions. This is done based on a theoretical foundation of repre-
senting incremental expressions as monads. These monads represent the reguired

3 https://github.com/FTSRG/trainbenchmark-ttc/raw/master/paper/trainbenchmark-ttc.
pdf

4 http://ttc2015trainbenchmarknmf.codeplex.com

5 http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=
ArchLinux64-TTC15_NMF.vdi

6 http://nmf.codeplex.com

7 http://nmfexpressions.codeplex.com

https://github.com/FTSRG/trainbenchmark-ttc/raw/master/paper/trainbenchmark-ttc.pdf
https://github.com/FTSRG/trainbenchmark-ttc/raw/master/paper/trainbenchmark-ttc.pdf
http://ttc2015trainbenchmarknmf.codeplex.com
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64-TTC15_NMF.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64-TTC15_NMF.vdi
http://nmf.codeplex.com
http://nmfexpressions.codeplex.com

Georg Hinkel and Lucia Happe

validation expressions and can be specified in C# conveniently through the query
syntax. Our goal is to hide the incrementality concerns from the developer, who
has to specify the validation expression only, and automate the incrementali-
sation of the validation expression. Therefore, we use the C# language in as
declarative style as possible. In this paper, we evaluate the efficiency of incre-
mental validation with NMF Ezpressions. The rest of this paper is structured
as follows: Section 2 gives a very short introduction to NMF Ezxpressions and
Section 3 explains our solution.

2 NMF Expressions

The goal of NMF Expressions is to give developers a automated tool at hand pro-
viding them with advantages of incremental evaluation for arbitrary expressions.
Unlike many other approaches, our approach works implicit, so developers only
have to specify their expressions and NMF Expressions takes care of how to turn
this into an algorithm that will evaluate the expression in an incremental fash-
ion. The presented approach creates a dynamic dependency graph from a given
expression and observes changes. These changes are recorded by elementary up-
date notifications. As NMF Ezxpressions operate on the .NET platform where
these update notifications are sent via events of the INotifyPropertyChanged and
INotifyCollectionChanged interfaces. These interfaces are an industry standard
on the .NET platform and are also required by a lot of other tools including the
modern UT libraries on the .NET platform that describe user interfaces through
XAML (an XML dialect) and use these change notifications to keep the user
interface updated. These elementary notifications are then assembled by NMF
Ezxpressions through these dependency graphs which hold the current value of a
given expression and propagate updates through the graph.

3 Solution with NMF Expressions

The intended usage of NMF Expressions is that users would modify the model
in some editor as expressions. Then, NMF' Fxpressions would use the elementary
update notifications and use them intelligently to provide immediate feedback
whether the most recent model manipulation has caused some validation rule
to fail for some model elements. Currently, NMF Expressions always minimizes
the model elements that it has to look at, even if that causes a high memory
usage. However, in the Train benchmark, the only model manipulations we can
see are the repair operations, so the benchmark does not really reflect for us the
situation for which we have designed NMF FExpressions.

NMF Expressions creates a cache for the selected expressions and maintains
this cache. This maintenance happens automatically as NMF Ezxpressions adds
computational effort to the (in-memory) online model manipulation. In this case
solution, we created expressions for the validation patterns so NMF Expressions
caches the invalid elements continuously. However, this means that the phases
drawn from the case description get blurred. In particular, the check phases

T W=

An NMF solution to the Train Benchmark Case at the TTC 2015

get meaningless as the updated results are always available and could be used
for immediate feedback, while more computational effort is put to the model
manipulation such as the modify operations.

Because NMF Ezxpressions allows to use the same specification both in a
classic batch manner as also incrementally, the program that drives our solution
can be also be configured to run in batch mode without any changes to the
patterns.

In the following we will present the solution to the tasks, following the struc-
ture of the case description, using NMF FExpressions.

POSL@TLgth 1 Fix(pattern: rc.Descendants().0fType<Segment>().Where(seg => seg.Length < 0),
2 action: segment => segment.Length = -segment.Length + 1);

SwitchSensor 1 Fix(pattern: rc.Descendants().0fType<Switch>().Where(sw => sw.Sensor == null),
2 action: sw => sw.Sensor = new Sensor());

SwitchSet 1 Fix(pattern: from route in rc.Routes
2 where route.Entry != null & route.Entry.Signal == Signal.GO
3 from swP in route.Follows.0fType<SwitchPosition>() where
4 swP.Switch.CurrentPosition != swP.Position select swP,
5 action: swP => swP.Switch.CurrentPosition = swP.Position);

RouteSensor Fix(pattern: from route in rc.Routes
from swP in route.Follows.0fType<SwitchPosition>() where
swP.Switch.Sensor != null &&
!route.DefinedBy.Contains(swP.Switch.Sensor) select new { Route
= route, Sensor = swP.Switch.Sensor },

action: match => match.Route.DefinedBy.Add(match.Sensor),

O U W N =

SemaphoreNeighbor Fix(pattern: from routel in rc.Routes
from route2 in rc.Routes where route2.Entry != routel.Exit from
sensorl in routel.DefinedBy from tel in sensorl.Elements from
te2 in tel.ConnectsTo where te2.Sensor == null ||
route2.DefinedBy.Contains(te2.Sensor) select new { Route =
route2, Semaphore = routel.Exit },
action: match => match.Route.Entry = match.Semaphore);

O UL W N

The patterns are enumerable expressions where developers can choose at
runtime whether the pattern should be executed in a batch manner or whether
NMF Ezxpressions should register for atomic element changes to keep the pattern
computation up to date. Note as well that the parameter names pattern and
action are optional, we only included them for better understandability.

public void Fix<T>(IEnumerableExpression<T> pattern, Action<T> action) {
var patternInc = pattern.AsNotifiable();
foreach (T element in patternInc) action(element);
patternInc.CollectionChanged += (0,e) => {
if (e.NewItems != null)

© 0~

Georg Hinkel and Lucia Happe

foreach (T element in e.NewItems)
action(element);
}
}

Listing 1. A simplified implementation of the Fix function

The easiest implementation for the Fix function using the latter and repairing
any validation error as soon as they occur would be the one presented in Listing 1.
In Line 2 we tell NMF Ezxpressions that we want to obtain incremental updates
for the given pattern. Line 3 repairs all occurences existing so far and Lines 4-8
handle new pattern matches. For the benchmark, we adopted the Fix function
to account for the benchmark phases. However, the implementation of Fix that
we use in our solution is much more complicated taking into account the frame
conditions of the benchmark. In particular, we need a third parameter which
selects us a pattern sort key, so that we have the chance to sort the patterns.

The solution to SwitchSet is a bit more interesting since the pattern involved
is a bit more complex. Here, the method chaining syntax would no longer be
concise and understandable. Thus, we use the query syntax of C#. This syntax
is translated to the method chaining syntax by mapping the query keywords like
from or where to method calls of NMF Expressions. Such query expressions are
commonality on the .NET platform and thus easy to write and understand by
most developers. Note that the order in which the statements occur does make a
difference. In particular, lines 2 and 3 could logically be interchanged but cause
a slightly different implementation. In particular, NMF Ezpressions currently
does not optimize the query for performance.

4 Summary

In the following we discuss our observations about the evaluation criteria sug-
gested by the case description, especially: conciseness, readability and perfor-
mance.

Conciseness and readability The queries and repair transformations demonstrates
why we have sticked to the C# language. We think that it is very hard to get a
more concise textual solution for this case. At the same time, developers get the
full tool support from e.g. Visual Studio and the syntax that we use is used by
hundred thousands of developers already.

Furthermore, the Line 4 of the solution to RouteSensor shows that our so-
lution is also able to select multiple elements from a given pattern through the
usage of anonymous types. In the solution for SemaphoreNeighbor we can ob-
serve that NMF Fxpressions is not able to inverse directed references. We argue
that such inversion is always limited to a particular scope, which is unclear from
the context. If the context was clear, the reference should have been navigable
in both directions in the metamodel. As this is not the case, we have to cross
join the two respective routes and filter them on the semaphores.

REFERENCES

The NMF Expressions can be specified in C# conveniently through the query
syntax. Apart from the expressiveness of our approach, we regard this as a big
advantage. So far, few companies have adopted MDE as their main development
paradigm with one of the major reasons being the lack of tool support [2], [3].
Developers are used to an excellent tool support for languages like Java or C+#
which many MDE tools cannot bear to meet. Furthermore, studies as e.g. by
Meyerovich suggest that developers only change their primary programming lan-
guage when a project requires them to or they can reuse a large proportion
of code. We see no reason why this should not extend to model validation ex-
pressions and thus we are seeking for the ways to let developers specify these
expressions in their primary languages.

Performance With our implementation of NMF Expressions, we have manifested
speedups up to 4.8 for the incremental evaluation of some expressions compared
to their batch execution running on .NET. These advantages come usually at
the price of a higher memory consumption which we argue is affordable given
the current memory prices. Meanwhile, the performance that can be gained from
incremental execution is not constant but individual for all queries. For the given
benchmark, the platform restriction that the solution has to run on Linux means
we have to use Mono as the runtime environment, which we have not properly
tested yet. We already noticed that the memory metric by taking the working
set size does not work. Furthermore, the restriction that the matches should
be sorted means that the model manipulation steps get inflated by the sorting,
which is not necessary for the determinism of the results but introduces bias.

With NMF Expressions, we have come to a point where we can let devel-
opers choose at runtime whether they want their expressions to be evaluated
incrementally or in classical batch mode, depending on which solution seems
more appropriate. However, given the page limit, we have not included any per-
formance figures.

References

[1] L. A. Meyerovich and A. S. Rabkin, “Empirical analysis of programming lan-
guage adoption,” in Proceedings of the 2013 ACM SIGPLAN international
conference on Object oriented programming systems languages €& applications,
ACM, 2013, pp. 1-18.

[2] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez, “An empirical
study of the state of the practice and acceptance of model-driven engineering
in four industrial cases,” Empirical Software Engineering, vol. 18, no. 1, pp. 89—
116, 2013.

[3] M. Staron, “Adopting model driven software development in industry—a case
study at two companies,” in Model Driven Engineering Languages and Sys-
tems, Springer, 2006, pp. 57-72.

	An NMF solution to the Train Benchmark Case at the TTC 2015

