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This paper describes the ATL/EMFTVM solution of the TTC 2015 Train Benchmark Case. The
Train Benchmark Case consists of several model validation and model repair tasks, all of which are
run again increasing model sizes in order to measure the performance of each solution for the case.
A complete solution for all tasks is provided, and is discussed with regard to the three provided eval-
uation criteria: Correctness and Completeness of Model Queries and Transformations, Applicability
for Model Validation, and Performance on Large Models.

1 Introduction

This paper describes the ATL/EMFTVM [2] solution of the TTC 2015 Train Benchmark Case [5]. The
Train Benchmark Case consists of several model validation and model repair tasks, all of which are
run again increasing model sizes in order to measure the performance of each solution for the case. A
complete solution for all tasks is provided, and is available as a GitHub fork of the original assignment1.

The remainder of this paper is structured as follows: section 2 describes the ATL transformation tool
and its features that are relevant to the case. Section 3 describes the solution to the case, and section 4
concludes this paper with an evaluation.

2 ATL

ATL is a rule-based, hybrid model transformation language that allows declarative as well as impera-
tive transformation styles. For this TTC solution, we use the new EMF Transformation Virtual Machine
(EMFTVM) [6]. EMFTVM includes a number of language enhancements, as well as performance en-
hancements. For this TTC case, specific performance enhancements are relevant. Each of these enhance-
ments is described briefly in the following subsections.

2.1 JIT compiler

EMFTVM includes a Just-In-Time (JIT) compiler that translates EMFTVM bytecode to Java bytecode.
EMFTVM bytecode instructions are organised in code blocks (see Fig. 1). Code blocks are executable
lists of instructions, and have a number of local variables and a local stack space. Code blocks are used
to represent operation bodies, field initialisers, rule guards, and rule bodies. Code blocks may also have
nested code blocks, which effectively represent closures2. EMFTVM records how often each code block
is executed, as well as some execution metadata, such as which methods were dispatched in each virtual

1https://github.com/dwagelaar/trainbenchmark-ttc
2http://en.wikipedia.org/wiki/Closure_(computer_programming)
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method call. When a code block is executed more often than a predefined threshold, the JIT compiler
triggers, and will generate a Java bytecode equivalent for the EMFTVM code block. The JIT compiler
provides the best performance improvement for large and complex code blocks.
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Figure 1: Structure of EMFTVM rules and code blocks

2.2 Lazy evaluation

EMFTVM includes an implementation of the OCL 2.2 standard library [4], and employs lazy evaluation
for the collection operations3 (e.g. select, collect, flatten, isEmpty, etc.). That means you can
invoke operations on the collections, but those operations will not be executed until you actually evaluate
the collection. Also, collection operations will only be evaluated partially, depending on how much of
the collection you evaluate. To illustrate how this works, look at the example code in Listing 1. The
lazytest query invokes ”collect” on a Sequence of all numbers from 0 to 100, and replaces each value
in the Sequence by its squared value. Finally, we’re only interested in the last value of the changed
Sequence. collect returns a lazy Sequence, which is just waiting to be evaluated. Only when ”last” is
invoked on the lazy Sequence will the Sequence invoke the ”expensive” operation on the last element of
the input Sequence. As a result, square is only invoked once.

query lazytest = Sequence {0..100} - > collect(x | x.square())->last ();

h e l p e r c o n t e x t Integer d e f : square () : Integer =

( s e l f * s e l f ).debug(’square ’);

Listing 1: Lazy collections in ATL

In addition, short-circuit evaluation is applied to boolean expressions (i.e. and, or, and not). While
this may not be a desirable semantics for OCL in general, it is advantageous for using OCL as a navi-
gation language: only the relevant parts of the model are navigated. Lazy evaluation provides the best
performance improvement when only consuming a small part of a string of collection operations (e.g.

3https://wiki.eclipse.org/ATL/EMFTVM#Lazy_collections
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list->reject(x | x.attr.oclIsUndefined())->collect(x | x.attr)->first()). Short-
circuit evaluation prevents having to use (nested) if-then-else-endif blocks everywhere.

2.3 Caching of model elements

Model transformations usually look up model elements by their type or meta-class. In the Eclipse Mod-
eling Framework (EMF) [1], this means iterating over the entire model and filtering on element type.
Often, an element look up by type is made repeatedly on the same model (especially when doing re-
cursive, in-place transformation4). In the case of this benchmark, the same query/transformation is run
multiple times on the same model. For this reason, EMFTVM keeps a cache of model elements by
type for each model. This cache is automatically kept up to date when adding/removing model elements
through EMFTVM. The cache is built up lazily, which means that a full iteration over the model, looking
for a specific element type, must have taken place before the cache is activated for that element type.
This prevents a build up of caches that are never used.

3 Solution Description

The Train Benchmark Case involves first querying a model for constraint violations, and then repair-
ing some of those constraint violations that are randomly selected by the benchmark framework. This
means that the matching phase and the transformation phase, which are normally integrated in ATL, are
now separated by the benchmark framework. The framework first launches the matching phase, and
collects the found matches. After that, it randomly selects a number of matches, and feeds them into the
transformation phase.

ATL provides a query construct that allows one to query the model using OCL. The resulting values
are returned by the ATL VM. The selected matches are fed back into the ATL VM through a helper
attribute, specified in the framework repair transformation module shown in Listing 2. Note that the ATL
query returns a lazy collection, which is just waiting to be evaluated. The benchmark framework compen-
sates for this by copying all values of the returned lazy collection into a regular java.util.ArrayList,
which triggers evaluation. This ensures that the performance measurements are valid.

The Repair transformation module contains a helper attribute matches, which is used to inject the
matches selected by the benchmark framework. Furthermore, it contains a lazy rule Repair, which does
nothing in this framework transformation. The Repair rule is invoked by every element in matches by
the Main endpoint rule. The Main endpoint rule is automatically invoked. Normally, ATL transforma-
tions use matched rules that are automatically triggered for all matching elements in the input model(s).
However, this benchmark requires the elements to transform to be set explicitly. Hence the need for this
framework transformation module. All specific repair transformation modules are superimposed [7] onto
the framework transformation module, and redefine the Repair rule. This means that for each task we
only need to define an ATL query and a Repair rule. The Java code in the benchmark plug-in for ATL
is made up of a base class ATLBenchmarkCase that provides the generic logic for:

1. instantiating a query VM, a transformation VM, and loading the metamodels (init);

2. loading the models (read);

3. performing the query phase of the benchmark (check);

4. performing the transformation phase of the benchmark (modify).

4https://code.google.com/a/eclipselabs.org/p/simplegt/
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module Repair;

c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;

--- Helper attribute that holds the matches to transform.

--- Injected from outside the transformation.

h e l p e r d e f : matches : Collection(OclAny) = Sequence {};

--- Base implementation of the Repair rule that does nothing.

l a z y r u l e Repair {

from
s: OclAny

}

--- Applies the Repair rule to all matches.

e n d p o i n t r u l e Main() {

do {

f o r (s i n t h i s M o d u l e .matches) {

t h i s M o d u l e .Repair(s);
}

}

}

Listing 2: Framework repair transformation module in ATL

Each specific task subclasses the ATLBenchmarkCase class, but only has to override the init

method. The overridden init does all of the superclass init, but also loads the ATL transformation
bytecode into the query VM and the transformation VM.

3.1 Task 1: PosLength

The PosLength task consists of a query that checks for Segments with a length less than or equal to zero,
and a repair transformation that updates the length attribute of the segment in the match to length+1.

Listing 3 shows the ATL query for Poslength. It simply collects all Segment instances with a length
of zero or smaller.

query PosLength = RAILWAY!Segment.allInstances()->select(s | s.length <= 0);

Listing 3: PosLength query in ATL

Listing 4 shows the ATL repair transformation module for Poslength. It imports the framework
Repair transformation module from Listing 2, and redefines the Repair rule. As no new elements need
to be created, and no implicit tracing of source elements to target elements is required, an imperative
do block is used to make the required modification directly on the source element. The <:= assignment
operator is used instead of the <- binding operator, such that the implicit source-to-target tracing is
skipped.

3.2 Task 2: SwitchSensor

The SwitchSensor task consists of a query that checks for Switches that are not connected to a Sensor,
and a repair transformation that creates and connects a new Sensor.

Listing 5 shows the ATL query for SwitchSensor. It collects all Switch instances for which the sensor
is not set.

Listing 6 shows the ATL repair transformation module for SwitchSensor. This time, the Repair rule
also contains a to section that creates a new Sensor instance se. In the do section, this Sensor is assigned
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module PosLengthRepair;

c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;

u s e s Repair;

l a z y r u l e Repair {

from
s: RAILWAY!Segment

do {

s.length <:= -s.length + 1;

}

}

Listing 4: PosLength repair transformation module in ATL

query SwitchSensor = RAILWAY!Switch.allInstances()->select(s | s.sensor.oclIsUndefined ());

Listing 5: SwitchSensor query in ATL

to the sensor reference of the input Switch element.

module SwitchSensorRepair;

c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;

u s e s Repair;

l a z y r u l e Repair {

from
s: RAILWAY!Switch

t o
se: RAILWAY!Sensor

do {

s.sensor <:= se;

}

}

Listing 6: SwitchSensor repair transformation module in ATL

3.3 Task 3: SwitchSet

The SwitchSet task consists of a query that checks for Routes that are not connected to a Sensor, which
have a semaphore that show the GO signal. Additionally, the route follows a switch position (p) that
is connected to a switch (sw), but the switch position (p.position) defines a different position from the
current position of the switch (sw.currentPosition). Furthermore, a repair transformation is provided,
which sets the currentPosition attribute of the switch to the position of the switchPosition.

Listing 7 shows the ATL query for SwitchSet. This query is more complex, and uses two helper
attributes, goRoutes and wrongSwitchPositions, to spread the complexity. The main query collects
Tuples of each match, where a match is defined by Route r, Semaphore s, SwitchPosition p, and Switch
sw. A Tuple is created for each wrong SwitchPosition that was found for each Route with a “GO” signal.
As one can see, Tuples allow for returning matches with multiple elements to the benchmark framework.

Listing 8 shows the ATL repair transformation module for SwitchSet. The Repair rule takes the
Tuple match as input element this time, and assigns the SwitchPosition’s position to the Switch’s cur-
rentPosition.
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query SwitchSet = t h i s M o d u l e .goRoutes
->collect(r | r.wrongSwitchPositions

->collect(p |

Tuple{r = r, s = r.entry , p = p, sw = p.switch}

)

)

->flatten ();

--- Returns all Routes with a #GO signal on the entry Semaphore.

h e l p e r d e f : goRoutes : Sequence(RAILWAY!Route) =

RAILWAY!Route.allInstances()->select(r |

n o t r.entry.oclIsUndefined () and r.entry.signal = #GO

);

--- Returns all wrong SwitchPositions for the given Route.

h e l p e r c o n t e x t RAILWAY!Route

d e f : wrongSwitchPositions : Sequence(RAILWAY!SwitchPosition) =

s e l f .follows ->select(p |

n o t p.switch.oclIsUndefined () and p.switch.currentPosition <> p.position

);

Listing 7: SwitchSet query in ATL

module SwitchSetRepair;

c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;

u s e s Repair;

l a z y r u l e Repair {

from
s : TupleType(

r : RAILWAY!Route ,

s : RAILWAY!Semaphore ,

p : RAILWAY!SwitchPosition ,

sw : RAILWAY!Switch)

do {

s.sw.currentPosition <:= s.p.position;

}

}

Listing 8: SwitchSet repair transformation module in ATL

3.4 Extension Task 1: RouteSensor

The RouteSensor task consists of a query that checks for Sensors that are connected to a Switch, but
the Sensor and the Switch are not connected to the same Route. The repair transformation inserts the
missing definedBy Sensors for the Route.

Listing 9 shows the ATL query for RouteSensor. This query uses two helper attributes, routes-
WithSensors and wrongSwitchPositions, to spread the complexity. The main query collects Tu-
ples of each match, where a match is defined by Route r, SwitchPosition p, Switch sw, and Sensor s.
A Tuple is created for each SwitchPosition connected to a Sensor that is not connected to the Route
(wrongSwitchPositions), for each Route that has Sensors connected to it (routesWithSensors).

Listing 10 shows the ATL repair transformation module for RouteSensor. The Repair rule takes the
Tuple match as input element, and adds the Sensor in the match to the Route’s definedBy sensors.
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query RouteSensor = t h i s M o d u l e .routesWithSensors
->collect(r | r.wrongSwitchPositions

->collect(p |

Tuple{r = r, p = p, sw = p.switch , s = p.switch.sensor}

)

)

->flatten ();

--- Returns all Routes with Sensors.

h e l p e r d e f : routesWithSensors : Sequence(RAILWAY!Route) =

RAILWAY!Route.allInstances()->select(r | r.definedBy ->notEmpty ());

--- Returns all wrong SwitchPositions for the given Route.

h e l p e r c o n t e x t RAILWAY!Route

d e f : wrongSwitchPositions : Sequence(RAILWAY!SwitchPosition) =

s e l f .follows ->select(p |

l e t switch : RAILWAY!Switch = p.switch i n
n o t switch.oclIsUndefined () and
n o t switch.sensor.oclIsUndefined () and
s e l f .definedBy ->excludes(switch.sensor)

);

Listing 9: RouteSensor query in ATL

module RouteSensorRepair;

c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;

u s e s Repair;

l a z y r u l e Repair {

from
s : TupleType(

r : RAILWAY!Route ,

p : RAILWAY!SwitchPosition ,

sw : RAILWAY!Switch ,

s : RAILWAY!Sensor)

do {

s.r.definedBy <:= s.r.definedBy ->including(s.s);

}

}

Listing 10: RouteSensor repair transformation module in ATL

3.5 Extension Task 2: SemaphoreNeighbor

The SemaphoreNeighbor task consists of a query that checks for Routes r1 that have an exit Semaphore,
and a Sensor s1 connected to another Sensor s2 – defining another Route r3 – by two TrackElements
te1 and te2, for which there is no other Route r2 that connects the same Semaphore and the other
Sensor s2. Furthermore, a repair transformation is provided, which removes the exit Semaphore from
Route r1.

Listing 11 shows the ATL query for SemaphoreNeighbor. The query uses a SimpleGT [6] trans-
formation module to collect matches. SimpleGT is a minimal graph transformation language with em-
bedded OCL support, and supports local search plans for pattern matching. Both SimpleGT and ATL
compile to EMFTVM bytecode, and can hence be executed together as a single transformation. Experi-
mentation has shown the EMFTVM local search support to be more performant than encoding the search
plan directly in OCL. The pure ATL/OCL query alternative solution is given for reference purposes in
Appendix A.

SimpleGT matches are recorded in the implicit trace model by EMFTVM. The ATL query reads the
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query SemaphoreNeighbourQuery = t h i s M o d u l e .traces.getLinksByRule(’Check’, true).links

->collect(l | Tuple{

r1 = l.getSourceElement(’r1’, true).object ,

s1 = l.getSourceElement(’s1’, true).object ,

te1 = l.getSourceElement(’te1’, true).object ,

te2 = l.getSourceElement(’te2’, true).object ,

s2 = l.getSourceElement(’s2’, true).object ,

r3 = l.getSourceElement(’r3’, true). object });

u s e s SemaphoreNeighbourCheck;

Listing 11: SemaphoreNeighborQuery in ATL

recorded traces using reflection, and creates OCL Tuples for each matching trace. Fig. 2 shows a class
diagram of the EMFTVM Trace metamodel, including the built-in operations. The root object of the
trace model is a TraceLinkSet, which can be accessed from ATL using the built-in thisModule.traces

helper attribute.

Figure 2: The EMFTVM Trace metamodel

Listing 12 shows the SimpleGT check transformation for SemaphoreNeighbor. It uses a “single” rule
(i.e. one-shot, non-recursive matching) to match the required pattern. Whenever a navigation is possible
from one element to the next, the SimpleGT compiler produces a local search expression to find the next
element. EMFTVM will evaluate this local search expression whenever available instead of iterating over
the entire model. There is one situation where direct navigation is not possible: finding Route r3 from
Sensor s2. To get around this problem, the routes helper attribute is defined on the Sensor metaclass.
This helper attribute uses uses the Object Indexing pattern [3], applied in the routesBySensor helper,
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to reduce the search space for matching Routes r3. This is achieved by pre-indexing all Routes by their
definedBy Sensors. ATL/EMFTVM provides the mappedBy collection operation for this. The routes

helper attribute can now be used in the Check rule to navigate from Sensor s2 to all possible Routes r3.
The not part in the rule represents a negative application condition (NAC), which specifies a condition
that may not occur in a valid match. A rule can have multiple not parts. SimpleGT requires you to
specify a left-hand-side (LHS) and right-hand-side (RHS) for each rule, represented by the from and the
to part, respectively. The LHS is always replaced by the RHS. Because we don’t want the Check rule to
change anything, we must repeat the LHS in the RHS to prevent it from being deleted.

module SemaphoreNeighbourCheck;

metamodel RAILWAY : ’/hu.bme.mit.trainbenchmark.ttc.emf.model/model/railway.ecore ’;

t r a n s f o r m IN : RAILWAY;

-- Checks for matches

s i n g l e r u l e Check {

from
r1 : RAILWAY!Route (definedBy =~ s1),

s1 : RAILWAY!Sensor (elements =~ te1),

te1 : RAILWAY!TrackElement (connectsTo =~ te2),

te2 : RAILWAY!TrackElement (sensor =~ s2),

s2 : RAILWAY!Sensor (routes =~ r3),

r3 : RAILWAY!Route

n o t
s2 : RAILWAY!Sensor (routes =~ r2),

r2 : RAILWAY!Route (entry =~ r1.exit)

t o
r1 : RAILWAY!Route (definedBy =~ s1),

s1 : RAILWAY!Sensor (elements =~ te1),

te1 : RAILWAY!TrackElement (connectsTo =~ te2),

te2 : RAILWAY!TrackElement (sensor =~ s2),

s2 : RAILWAY!Sensor (routes =~ r3),

r3 : RAILWAY!Route

}

-- Returns the Routes mapped by their Sensor.

c o n t e x t RAILWAY!Sensor d e f : routes : Set(RAILWAY!Route) =

l e t routes : Set(RAILWAY!Route) = Env:: routesBySensor.get( s e l f ) i n
i f routes.oclIsUndefined () t h e n

Set{}

e l s e
routes

e n d i f ;

-- Returns the Routes mapped by their Sensor.

-- See: https :// wiki.eclipse.org/ATL/Design_Patterns#Object_indexing

s t a t i c d e f : routesBySensor : Map(RAILWAY!Sensor , Set(RAILWAY!Route)) =

RAILWAY!Route.allInstances()->mappedBy(e | e.definedBy );

Listing 12: SemaphoreNeighborCheck transformation module in SimpleGT

Listing 13 shows the ATL repair transformation module for SemaphoreNeighbor. The Repair rule
takes the Tuple match as input element, and removes the exit Semaphore from Route r1.

4 Evaluation and Conclusion

The solutions for the Train Benchmark Case are evaluated on three criteria: (1) Correctness and Com-
pleteness of Model Queries and Transformations, (2) Applicability for Model Validation, and (3) Perfor-
mance on Large Models. We will now discuss how the ATL solution aims to meet these criteria.



10 The ATL/EMFTVM Solution to the Train Benchmark Case for TTC2015

module SemaphoreNeighbourRepair;

c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;

u s e s Repair;

l a z y r u l e Repair {

from
s : TupleType(

r1 : RAILWAY!Route ,

s1 : RAILWAY!Sensor ,

te1 : RAILWAY!TrackElement ,

te2 : RAILWAY!TrackElement ,

s2 : RAILWAY!Sensor ,

r3 : RAILWAY!Route)

do {

s.r1.exit <:= OclUndefined;

}

}

Listing 13: SemaphoreNeighbor repair transformation module in ATL

4.1 Correctness and Completeness

The benchmark framework provides a set of expected query/transformation results, against which the
output of the ATL solution can be compared. The ATLTest JUnit test case verifies that the output of the
ATL solution matches the reference solution. The test results of each build are kept in the cloud-based
Travis continuous integration platform5. This independent platform provides an objective proof that the
ATL solution unit tests are passing. Furthermore, all git commits for the ATL solution are publicly
available on GitHub, and it can be verified that no modifications are made to the benchmark framework
and/or the expected result set.

4.2 Applicability

In order for a solution to be applicable for model validation, it must be concise and maintainable. Even
though ATL is not primarily intended for interactive querying and transformation, it was easy to fit the
ATL implementation into the benchmark framework. Simple queries are trivially expressed in OCL,
using a functional programming style (PosLength, SwitchSensor). Complex queries that return tuples
as matches (SwitchSet, RouteSensor, SemaphoreNeighbor) require a navigation strategy to be imple-
mented. While this is not as declarative as first-class patterns, it is more concise than imperative pro-
gramming. Also, ATL provides helper attributes and operations to divide the complexity into modular
blocks. For very complex patterns, EMFTVM provides a built in local search engine. Currently, this
engine is only used by the SimpleGT graph transformation language, which also compiles to EMFTVM
bytecode. Because of this, a hybrid ATL/SimpleGT solution can be used to perform the check phase of
the SemaphoreNeighbor task, which is more readable overall.

All repair phase transformations are all simple, single rule transformation modules that are super-
imposed onto a single framework Repair transformation module (see Listing 2). Query matches are
provided via the rule from part, whereas the model element modification is done in a do block. Any new
elements are specified in the to block.

Most example and production ATL transformation modules are much longer than the ones used in the
benchmark case solution6, with industrial cases going up to 7000 lines of ATL for a single transformation

5https://travis-ci.org/dwagelaar/trainbenchmark-ttc
6https://www.eclipse.org/atl/atlTransformations/

https://travis-ci.org/dwagelaar/trainbenchmark-ttc
https://www.eclipse.org/atl/atlTransformations/
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scenario7. Even such long transformation modules have proven to be sufficiently maintainable, especially
when compared to implementations in Java.

4.3 Performance

The benchmark framework supports running the solution against increasing model sizes, starting at 20

and going up by 2n+1. Within the memory constraints of the SHARE image8 of 1 GB RAM, we managed
to go up to model size 512 with -Xmx512m as JVM arguments. While all benchmark tasks can be
completed on SHARE for this model size within the time constraint of 5 minutes, this does not work
all of the time. The performance of a SHARE VM is not consistent, and we sometimes saw simple
tasks time out (e.g. RouteSensor, SwitchSensor), while the most complex task (SemaphoreNeighbor)
finishes. On local hardware (AMD 1055T9), with 8 GB RAM and using -Xmx4G as JVM arguments
(java-1.7.0-openjdk-1.7.0.79-2.5.5.0.fc20.x86 64), we managed to go up to model size 4096
without a single time-out.

In the ATL language, performance is achieved by using helper attributes instead of operations where
possible, as helper attribute values are cached; accessing a helper attribute more than once on the same
object will not trigger evaluation again, but just returns the cached value. In addition, design patterns
specific to model transformation, such as the Object Indexing pattern [3] can be used to reduce the search
space for a given model element.

Furthermore, the virtual machine (EMFTVM) also applies certain performance optimisations. Com-
plex code blocks are JIT-compiled to Java bytecode, which in turn may be JIT-compiled to native code
by the JVM. Collections and boolean expressions are evaluated lazily, preventing unnecessary navigation
and allowing short-circuit evaluation of expressions. Finally, model elements are cached by their type,
making repeated lookup of all instances of a certain metaclass more performant.

Fig. 3 shows the batch read and check scenario performance for the ATL/EMFTVM solution, and
Fig. 4 shows the repetitive recheck and repair scenario performance. Whereas most tasks have similar
performance in ATL/EMFTVM, the SemaphoreNeighbor task is an outlier. SemaphoreNeighbor proved
much heavier to solve for ATL/EMFTVM than the others. SemaphoreNeighbor requires local search
in order to be performant. The effect of caching model elements by type is minimal in this case, as
this cache will only provide the first element of the entire pattern. The lack of the element type cache
advantage is especially apparent in the recheck and revalidate scenario. SwitchSensor, on the other hand,
has significantly better performance for recheck and repair than the other tasks. This is due to – apart
from element type caching for all Switch instances – an efficient implementation in EMFTVM of the
oclIsUndefined() operation, which maps directly to the ISNULL instruction in EMFTVM. Combined
with JIT compilation, this yields very efficient Java bytecode.

A Alternative Solution for SemaphoreNeighbor

Listing 14 shows an alternative ATL query for SemaphoreNeighbor, using only the ATL language. This
query uses three helper attributes, routesWithExitSemaphore, sensorTuples, and routesBySensor,
to spread the complexity. The main query collects the sensorTuples for each Route with an exit

7http://www.slideshare.net/DennisWagelaar/wagelaar-sda2014
8http://is.ieis.tue.nl/staff/pvgorp/share/?trgPage=LookupImage&vdiNameSearch=TTC15_ATL
9http://www.cpubenchmark.net/cpu.php?cpu=AMD+Phenom+II+X6+1055T

http://www.slideshare.net/DennisWagelaar/wagelaar-sda2014
http://is.ieis.tue.nl/staff/pvgorp/share/?trgPage=LookupImage&vdiNameSearch=TTC15_ATL
http://www.cpubenchmark.net/cpu.php?cpu=AMD+Phenom+II+X6+1055T
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Figure 3: ATL batch validation performance for the fixed scenario

Semaphore, and flattens the resulting Sets into a single Set of Tuples. The sensorTuples helper col-
lects the match Tuples, where a match is defined by Route r1, Sensor s1, TrackElement te1, TrackEle-
ment te2, Sensor s2, and Route r3. A Tuple is created for each Route r3 that is different from Route
r1, connected to Sensor s2, where s2 is connected to Sensor s1 or Route r1 by TrackElements te1 and
te2. It uses the Object Indexing pattern [3], applied in the routesBySensor helper, to reduce the search
space for matching Routes r3. This is achieved by pre-indexing all Routes by their definedBy Sensors.
ATL/EMFTVM provides the mappedBy collection operation for this.

Fig. 5 shows the batch read and check scenario performance for the ATL/EMFTVM solution, and
Fig. 6 shows the repetitive recheck and repair scenario performance. When comparing these figures
to Fig. 3 and Fig. 4, one sees that the performance of this alternative query is consistently worse than
the SimpleGT solution. Apparently, the overhead of the OCL collection operations – many collects
followed by flatten – makes a bug difference. Apart from that, the local search algorithm implemented
here in OCL closely resembles what EMFTVM’s built in local search engine does.
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query SemaphoreNeighbour = t h i s M o d u l e .routesWithExitSemaphore
->collect(r | r.sensorTuples)

->flatten ();

--- Returns all Routes with exit Semaphore.

h e l p e r d e f : routesWithExitSemaphore : Sequence(RAILWAY!Route) =

RAILWAY!Route.allInstances()->reject(r | r.exit.oclIsUndefined ());

--- Returns the sensor tuples and their track elements that match the given route.

h e l p e r c o n t e x t RAILWAY!Route d e f : sensorTuples : Sequence(

TupleType(

r1 : RAILWAY!Route ,

s1 : RAILWAY!Sensor ,

te1 : RAILWAY!TrackElement ,

te2 : RAILWAY!TrackElement ,

s2 : RAILWAY!Sensor ,

r3 : RAILWAY!Route )) =

s e l f .definedBy ->collect(s1 |

s1.elements ->collect(te1 |

te1.connectsTo ->reject(te2 |

l e t s2 : RAILWAY!Sensor = te2.sensor i n
s2.oclIsUndefined () or (

l e t s2routes : Set(RAILWAY!Route) = t h i s M o d u l e .routesBySensor.get(s2) i n
s2routes.oclIsUndefined () or
s2routes ->exists(r2 | r2.entry = s e l f .exit)

)

)->collect(te2 |

l e t s2 : RAILWAY!Sensor = te2.sensor i n
l e t s2routes : Set(RAILWAY!Route) = t h i s M o d u l e .routesBySensor.get(s2) i n
s2routes ->select(r3 |

r3 <> s e l f
)->collect(r3 |

Tuple{r1 = s e l f , s1 = s1, te1 = te1 , te2 = te2 , s2 = s2, r3 = r3}

)

)

)

)->flatten ();

--- Returns the Routes mapped by their Sensor.

h e l p e r d e f : routesBySensor : Map(RAILWAY!Sensor , Set(RAILWAY!Route)) =

RAILWAY!Route.allInstances()->mappedBy(e | e.definedBy );

Listing 14: SemaphoreNeighbor query in ATL
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Figure 5: ATL alternative solution batch validation performance for the fixed scenario
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Figure 6: ATL alternative solution revalidation performance for the fixed scenario
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