
Submitted to:
TTC 2015

Solving the TTC Train Benchmark Case with FunnyQT

Tassilo Horn
Institute for Software Technology, University Koblenz-Landau, Germany

horn@uni-koblenz.de

This paper describes the FunnyQT solution to the TTC 2015 Train Benchmark transformation case.
The solution solves all core and all extension tasks. FunnyQT is a model querying and model transfor-
mation library for the functional Lisp-dialect Clojure providing a comprehensive and efficient query-
ing and transformation API, many parts of which are provided as task-oriented embedded DSLs.

1 Introduction

This paper describes the FunnyQT1 [2, 3] solution of the TTC 2015 Train Benchmark Case [5]. All core
and extension tasks have been solved. The solution project is available on Github2, and it is set up for
easy reproduction on a SHARE image3.

FunnyQT is a model querying and transformation library for the functional Lisp dialect Clojure4.
Queries and transformations are plain Clojure programs using the features provided by the FunnyQT
API.

As a Lisp, Clojure provides strong metaprogramming capabilities that are exploited by FunnyQT
in order to define several embedded domain-specific languages (DSL, [1]) for different querying and
transformation tasks.

FunnyQT is designed with extensibility in mind. By default, it supports EMF [4] models and
JGraLab5 TGraph models. Support for other modeling frameworks can be added without having to
touch FunnyQT’s internals.

The FunnyQT API is structured into the following namespaces, each namespace providing constructs
supporting concrete querying and transformation use-cases:
funnyqt.emf EMF-specific model management API
funnyqt.tg JGraLab/TGraph-specific model management API
funnyqt.generic Protocol-based, generic model management API
funnyqt.query Generic querying constructs such as quantified expressions or regular path expressions
funnyqt.polyfns Constructs for defining polymorphic functions dispatching on metamodel types
funnyqt.pmatch Pattern matching constructs
funnyqt.relational Constructs for logic-based, relational model querying inspired by Prolog
funnyqt.in-place In-place transformation rule definition constructs
funnyqt.model2model Out-place transformation definition constructs similar to ATL or QVT Opera-

tional Mappings
funnyqt.extensional Transformation API similar to GReTL

1http://funnyqt.org
2https://github.com/tsdh/ttc15-train-benchmark-funnyqt
3The SHARE image name is ArchLinux64_TTC15-FunnyQT_2
4http://clojure.org
5http://jgralab.github.io

http://funnyqt.org
https://github.com/tsdh/ttc15-train-benchmark-funnyqt
http://clojure.org
http://jgralab.github.io


2 Solving the TTC Train Benchmark Case with FunnyQT

funnyqt.bidi Constructs for defining bidirectional transformations similar to QVT Relations
funnyqt.coevo Constructs for transformations that evolve a metamodel and a conforming model simul-

taneously at runtime
funnyqt.visualization Model visualization
funnyqt.xmltg Constructs for querying and modifying XML files as models conforming to a DOM-like

metamodel
For solving the train benchmark case, the funnyqt.emf and funnyqt.in-place namespaces have been

used.

2 Solution Description

In this section, the individual tasks are discussed one by one. They are all implemented as in-place
transformation rules supported by FunnyQT’s funnyqt.in-place transformation DSL. The rules’ repair
actions simply call the CRUD functions of the EMF-specific funnyqt.emf namespace.

Task 1: PosLength. The transformation rule realizing the PosLength task is given below.
1 (defrule pos-length {:forall true :recheck true} [g]
2 [segment<Segment>
3 :when (<= (eget-raw segment :length) 0)]
4 (eset! segment :length (inc (- (eget-raw segment :length)))))

The defrule macro defines a new in-place transformation rule with the given name (pos-length),
an optional map of options ({:forall true, ...}) a vector of formal parameters ([g]), a pattern
([segment<Segment>...]), and one or many actions to be applied to the pattern’s matches ((eset! ...)).
The first formal parameter must denote the model the rule is applied to, so here the argument g denotes
the train model when the rule is applied using (pos-length my-train-model).

The pattern matches a node called segment of metamodel class Segment. Additionally, the segment’s
length must be less or equal to zero as defined by the :when constraint. The action says that the segment’s
length attribute should be set to the incremented negation of the current length.

The normal semantics of applying a rule is to find one single match of the rule’s pattern and then
execute the rule’s actions on the matched elements. The :forall option changes this behavior to finding
all matches first, and then applying the actions to each match one after the other. FunnyQT automatically
parallelizes the pattern matching process of such forall-rules under certain circumstances like the JVM
having more than one CPU available and the pattern declaring at least two elements to be matched.

The :recheck option causes the rule to recheck if a pre-calculated match is still conforming the
pattern just before executing the rule’s actions on it. This can be needed for forall-rules whose actions
possibly invalidate matches of the same rule’s pattern, e.g., when the application of the action to a match
mi cause another match m j to be no valid match any longer6.

Task 2: SwitchSensor. The transformation rule realizing the SwitchSensor task is given below.
5 (defrule switch-sensor {:forall true :recheck true} [g]
6 [sw<Switch> -!<:sensor>-> <>]
7 (eset! sw :sensor (ecreate! nil ’Sensor)))

It matches a switch sw which is not contained by some sensor. The exclamation mark of the edge
symbol -!<:sensor>-> specifies that no such reference must exist, i.e., it specifies a negative application
condition. The action fixes this problem by creating a new Sensor and assigning that to the switch sw.

6This cannot happen for the pos-length rule, however the case description demands matches to be revalidated before
applying the repair actions.



T. Horn 3

Task 3: SwitchSet. The switch-set rule realizes the SwitchSet task. Its definition is given below.

8 (def Signal-GO (eenum-literal ’Signal.GO))

9 (defrule switch-set {:forall true :recheck true} [g]
10 [route<Route> -<:entry>-> semaphore
11 :when (= (eget-raw semaphore :signal) Signal-GO)
12 route -<:follows>-> swp -<:switch>-> sw
13 :let [swp-pos (eget-raw swp :position)]
14 :when (not= (eget-raw sw :currentPosition) swp-pos)]
15 (eset! sw :currentPosition swp-pos))

It matches a route with its entry semaphore where the semaphore’s signal is Signal.GO. The route
follows some switch position swp whose switch sw’s current position is different from that of the switch
position. The fix is to set the switch’s current position to the position of the switch position swp.

Note that there are no metamodel types specified for the elements semaphore, swp, and sw because
those are already defined implicitly by the references leading to them, e.g., all elements referenced by a
route’s follows reference can only be instances of SwitchPosition according to the metamodel. Fun-
nyQT doesn’t require the transformation writer to encode tautologies in her patterns7.

Extension Task 1: RouteSensor. The extension task RouteSensor is realized by the route-sensor
rule given below.

16 (defrule route-sensor {:forall true :recheck true} [g]
17 [route<Route> -<:follows>-> swp -<:switch>-> sw
18 -<:sensor>-> sensor --!<> route]
19 (eadd! route :definedBy sensor))

It matches a route that follows some switch position swp whose switch sw’s sensor is not contained
by the route. The repair action is to assign the sensor to the route.

Extension Task 2: SemaphoreNeighbor. The second and last extension task SemaphoreNeighbor is
realized by the semaphore-neighbor rule defined as shown below.

20 (defrule semaphore-neighbor {:forall true :recheck true} [g]
21 [route1<Route> -<:exit>-> semaphore
22 route1 -<:definedBy>-> sensor1 -<:elements>-> te1
23 -<:connectsTo>-> te2 -<:sensor>-> sensor2
24 --<> route2<Route> -!<:entry>-> semaphore
25 :when (not= route1 route2)]
26 (eset! route2 :entry semaphore))

It matches a route route1 which has an exit semaphore. Additionally, route1 is defined by a sensor
sensor1 which contains some track element te1 that connects to some track element te2 whose sensor
is sensor2. This sensor2 is contained by some other route route2 which does not have semaphore as
entry semaphore. The fix is to set route2’s entry reference to semaphore.

2.1 Deferred Rule Actions

As already mentioned above, the normal semantics of a forall-rule is to compute all matches of the
rule’s pattern first (possibly in parallel), and then apply the rule’s actions on every match one after
the other. However, the case description strictly separates the computation of matches from the repair
transformations.

7In fact, if there are types specified, those will be checked. So omitting them when they are not needed also results in
slightly faster patterns.



4 Solving the TTC Train Benchmark Case with FunnyQT

FunnyQT also provides stand-alone patterns. Using them, one could have defined patterns for finding
occurrences of the five problematic situations in a train model, and separate functions for the repair
actions where the latter receive one match of the corresponding pattern and fix that.

But for in-place transformation rules, FunnyQT also provides rule application modifiers. Concretely,
any in-place transformation rule r can be called as (as-pattern (r model)) in which case it behaves
as a pattern. That is, where a normal rule would usually find one match and apply its actions on it
and a forall-rule would usually find all matches and apply its actions to each of them, when called with
as-pattern, a rule simply returns the sequence of its matches. With a normal rule, this sequence is a lazy
sequence, i.e., the matches are not computed until they are consumed. With a forall-rule, the sequence is
fully realized, i.e., all matches are already pre-calculated (possibly in parallel).

The second FunnyQT rule application modifier is as-test, and this is what is highly suitable for this
transformation case. When a rule r is applied using (as-test (r model)), it behaves almost as without
modifier but instead of applying the rule’s actions immediately, it returns a closure of arity zero (a so-
called thunk) which captures the rule’s match and the rule’s actions. Invoking the thunk causes the actions
to be applied on the match. Thus, the caller of the rule gets the information if the rule was applicable at
all, and if it was applicable, she can decide if she wants to apply it or not. And when she applies it, the
pattern matching part is already finished and only the actions are applied on the pre-calculated match the
thunk closes over. The following snippet illustrates the behavior.
(if-let [thunk (as-test (r model))]

(if (< (Math/random) 0.5)
(thunk) ;; The rule was applicable, and here its actions are executed
(println "The coin toss decided to skip the application of the rule’s actions"))

(println "The rule is not applicable"))

One interesting point is that the thunk returned by calling a rule as a test has some metadata attached8.
For this TTC case, only the :match metadata entry is important. As its name suggests, its value is the
match of the rule’s pattern on which the thunk applies the actions.

In case of a forall-rule r, (as-test (r model)) doesn’t return a single thunk but a vector of thunks,
one thunk per match of the rule’s pattern. This is exactly what is needed for solving this transformation
case.

Finally, a function is defined that receives a rule r and a train model g and executes the rule as a test.
27 (defn call-rule-as-test [r g]
28 (as-test (r g)))

This is only needed in order to be able to call the rules as tests from Java. The reason is that only
functions (and rules which are functions, too) can be referred to from Java but as-test is a macro which
does its magic at compile-time.

These 28 lines of Clojure code form the complete functional part of the FunnyQT solution that solves
all core and extension tasks. The comparator used for sorting the matches in the benchmark framework is
also implemented using Clojure/FunnyQT and discussed in section 2.2. Additionally, there is a plain-Java
glue project which implements the interfaces required by the benchmark framework and simply delegates
to the Clojure/FunnyQT part of the solution. This glue project is briefly discussed in section 2.3 on the
next page.

2.2 Match Comparison

The case description demands that solutions provide comparators that are to be used for sorting matches.
All comparators simply compare two matches element by element with respect to the values of the id-

8Almost any Clojure object (functions, symbols, vars, collections, etc.) can have metadata attached. Metadata doesn’t affect
equality, i.e., two Clojure objects that differ only in their metadata are still equal.



T. Horn 5

attribute. The order in which the elements of two matches have to be compared is defined separately for
each task.

Instead of providing one comparator per task, the FunnyQT solution provides one higher-order func-
tion make-match-comparator which receives the names of the match elements to be compared and then
returns a suitable comparator. The function’s definition is given below.

1 (defn make-match-comparator [& kws]
2 (fn [t1 t2]
3 (loop [kws kws]
4 (if (seq kws)
5 (let [m1 ((first kws) (:match (meta t1)))
6 m2 ((first kws) (:match (meta t2)))]
7 (let [r (compare (eget m1 :id) (eget m2 :id))]
8 (if (zero? r)
9 (recur (rest kws))

10 r)))
11 0))))

The make-match-comparator function is to be used as follows.
(make-match-comparator :segment)
;=> comparator for pos-length
(make-match-comparator :sw)
;=> comparator for switch-sensor
(make-match-comparator :semaphore :route :swp :sw)
;=> comparator for switch-set
(make-match-comparator :route :sensor :swp :sw)
;=> comparator for route-sensor
(make-match-comparator :semaphore :route1 :route2 :sensor1 :sensor2 :te1 :te2)
;=> comparator for semaphore-neighbor

make-match-comparator returns a function of two arguments. In Clojure, every function implements
the java.util.Comparator interface and thus any function of two arguments which returns an integer
can be used as such.

The returned comparator function receives two thunks t1 and t2 that where returned by calling any
of the five above rules as tests. Then it iterates the keywords denoting the matched element names.
Lines 5 and 6 extract the actual elements of the thunks’ matches which are denoted by the first keyword.
Then line 7 compares the id attribute values. If the comparison returns a non-zero value and thus these
elements are different, the value is simply returned. Otherwise, the remaining keywords are tested one
after the other. Only if no distinction between matches can be made after considering all given keywords,
zero is returned.

2.3 Gluing the Solution with the Framework

Typically, open-source Clojure libraries and programs are distributed as JAR files that contain the source
files rather than byte-compiled class files. This solution does the same, and that JAR is deployed to a
local Maven repository from which the Maven build infrastructure of the benchmark framework can pick
it up.

Then, in the FunnyQT glue project the rules and functions from above are referred to like shown in
the next listing.

1 private final static String SOLUTION_NS = "ttc15-train-benchmark-funnyqt.core";
2 Clojure.var("clojure.core", "require").invoke(Clojure.read(SOLUTION_NS));
3 final static IFn POS_LENGTH = Clojure.var(SOLUTION_NS, "pos-length");
4 ...
5 final static IFn CALL_RULE_AS_TEST = Clojure.var(SOLUTION_NS, "call-rule-as-test");

In line 2, the solution namespace ttc15-train-benchmark-funnyqt.core is required9. The Clojure

9require is kind of Clojure’s equivalent to Java’s import statement.



6 Solving the TTC Train Benchmark Case with FunnyQT

class provides a minimal API for loading Clojure code from Java. When requiring a namespace as above,
it will be parsed and compiled to JVM byte-code just in time10.

Thereafter, the solution’s in-place transformation rules and the call-rule-as-test function are re-
ferred to. IFn is a Clojure interface whose instances are Clojure functions that can be called using the
invoke() method as can be seen in the definition of the glue project’s BenchmarkCase.check() method
shown below.

1 @Override
2 protected final Collection<Object> check() throws IOException {
3 matches = (Collection<Object>) FunnyQTBenchmarkLogic.CALL_RULE_AS_TEST
4 .invoke(rule, this.resource);
5 // If the rule has no matches it returns nil/null but the framework
6 // wants a Collection.
7 if (matches == null) {
8 matches = new LinkedList<Object>();
9 }

10 return matches;
11 }

In that code, rule is one of the rule IFns POS_LENGTH, SWITCH_SET, et cetera, and they are called via
the call-rule-as-test function to make them return one thunk per match instead of performing the
rules’ repair actions immediately.

The implementation of the BenchmarkCase.modify() method is even simpler.

1 @Override
2 protected final void modify(Collection<Object> matches) {
3 for (Object m : matches) {
4 ((IFn) m).invoke();
5 }
6 }

Since the rules are called as tests and thus return thunks that apply the rule’s actions, those simply
need to be invoked, and that’s it.

3 Evaluation

Correctness and Completeness. The FunnyQT solution implements all core and all extension tasks
exactly as demanded by the case description, thus it is complete. When run in the benchmark framework,
all assertion it checks are satisfied, thus the solution is also correct.

According to the case description, this gives a correctness and completeness score of 15 points.

Conciseness. The FunnyQT solution consists of 28 NCLOC of FunnyQT/Clojure code for the five
rules with their patterns and repair actions, and the function call-rule-as-test.

In comparison, the reference EMF-IncQuery solution has about 70 NCLOC only for the patterns
plus 69 NCLOC of plain Java code for the repair actions. Honestly, more than half of the lines of the
Java repair actions are boilerplate code. So by a fair measure one could say that the EMF-IncQuery
solution consists of a little bit less than 100 lines of code which actually implement the solution and are
no boilerplate.

The reference Java solution consists of 305 NCLOC for the queries and repair actions (excluding
the classes for the custom match representations). On the one hand, one could subtract maybe 10% for
boilerplate code but on the other hand, when encoding queries and transformations in Java, boilerplate
code is a fact you have to live with.

10If the Clojure code was distributed in a pre-compiled form, the resulting classes would simply be loaded.



T. Horn 7

To sum up, the FunnyQT solution is about three times shorter than the EMF-IncQuery solution and
about ten times shorter than the Java solution. Thus, if there is no even more concise solution, it deserves
a conciseness score of 15 points.

Readability. Readability is a very subjective matter, of course, so I won’t suggest a readability score
value here. However, there are some strong points with respect to readability.

• The queries (patterns) and repair actions are bundled in one concise in-place transformation rule
each. In contrast, in the EMF-IncQuery as well as the Java solution the queries and repair transfor-
mations are strictly separated. But the latter still depend on the former in that they can only work
with the matches produced by the former.

• FunnyQT’s pattern matching DSL used to specify the rules’ patterns is both concise and readable.
It should be easy to understand for graph transformation experts, especially if they have used
other textual graph transformation languages such as GrGen.NET before. It should also be easy
to understand for any Clojure programmer because it strictly conforms to the style guidelines and
best practices there, too.

Performance. Figure 1 on the following page and Figure 2 on page 9 show the runtimes of the Fun-
nyQT solution for all models up to the size of 8192 (12,512,663 elements, 23,048,272 references) and
the fixed and proportional strategies as measured by the train benchmark framework. The tests have been
performed on an 2.7 GHz 8-core machine with 16 GB of RAM being dedicated to the JVM process.

For the most complex rule semaphore-neighbor and the largest model with over twelve million
elements, the initial read & check phase takes slightly less than 140 seconds for both the fixed and the
proportional strategies. Almost all of this time is spend for loading the model.

The 10 iterations of the repair & recheck phase take about 100 seconds for both the fixed and pro-
portional strategies, i.e., every iteration is performed in about 10 seconds.

The benchmarks have also be run for the reference Java and the EMF-IncQuery solution on the same
test machine. For the Java solution, the initial read & check phase is slightly faster than the FunnyQT
solution but the 10 iterations of the repair & recheck phase only take 64 seconds which is astonishing.
Of course, a general pattern matching approach like that of FunnyQT has some overhead when compared
to a hand-crafted algorithm. But the iteration order implied by the FunnyQT pattern equals that of the
Java solution, and the FunnyQT solution performs the search in parallel on all 8 CPU cores. The only
obvious differences between the FunnyQT solution and the Java solution is that the former rechecks
matched elements before applying the repair actions whereas the latter doesn’t. However, the rechecking
only accounts for a tiny fraction of the overall execution time and thus doesn’t explain the execution time
difference.

When compared with the EMF-IncQuery solution one can say that the FunnyQT solution performs
better in the scenarios defined by the case description. With 16 GB of memory dedicated to the JVM
process, the EMF-IncQuery SemaphoreNeighbor query fails for the model of size of 8192. When com-
paring the overall execution time for the model of size 4096, i.e., the sum of the read & check and the
10 iterations of the repair & recheck phase, the FunnyQT solution is also a bit faster than the EMF-
IncQuery solution. However, with the incremental pattern matching approach of EMF-IncQuery, the
repair & recheck phase is extremely fast. Thus, when increasing the iteration count from 10 to some
higher value, the EMF-IncQuery solution will eventually outperform the FunnyQT solution pretty easily.

One thing to note is that the FunnyQT solution is about 20-30% faster when it is run in its stand-alone
project instead of being invoked by the train benchmark framework. The reason for this fact is unknown.



8 Solving the TTC Train Benchmark Case with FunnyQT

●

●

●
●

●

●

●

●

●

●

●

●

●

●

266.54

651.24

1591.18

3887.73

9498.93

23208.81

56706.26

138550.84

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

T
im

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

FunnyQT, fixed, Function: read+check (Y: Log2) (X: Log2)

● ●

●
●

●

●

●

●

●

●

●

●

●

●

48.21

143.89

429.48

1281.92

3826.31

11420.9

34089.49

101751.48

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

T
im

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

FunnyQT, fixed, Function: repair+recheck (Y: Log2) (X: Log2)

Figure 1: Results of the performance measurements (fixed strategy)

4 Conclusion

This paper described the FunnyQT solution to the TTC 2015 Train Benchmark case. It solves all three
core tasks and all two extension tasks, and the benchmark framework provides evidence that it delivers
correct results.

The solution is extremely concise. Its five rules and one function amount to a total of only 28 lines



T. Horn 9

●

●

●
●

●

●

●

●

●

●

●

●

●

●

265.49

648.69

1584.99

3872.76

9462.67

23121

56493.64

138036.05

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

T
im

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

FunnyQT, proportional, Function: read+check (Y: Log2) (X: Log2)

● ●

●
●

●

●

●

●

●

●

●

●

●

●

47.94

144.15

433.44

1303.29

3918.76

11783

35429.36

106529.68

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

T
im

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

FunnyQT, proportional, Function: repair+recheck (Y: Log2) (X: Log2)

Figure 2: Results of the performance measurements (proportional strategy)

of code (excluding comments, empty lines, and namespace declarations11).
With respect to readability, FunnyQT’s pattern matching/in-place transformation rule DSL should be

quite familiar to both people with a graph transformation background and people with a Clojure back-
ground. A strong point is that the patterns matching invalid subgraphs and the corresponding repair
actions are defined in one place as transformation rules. Nevertheless, the matching part and the ap-
plication of the repair actions on (only parts of) the matches is well-supported using FunnyQT’s rule

11Namspace declarations are Clojure’s equivalent to Java’s package and import statements.



10 Solving the TTC Train Benchmark Case with FunnyQT

application modifier macro as-test.
The FunnyQT solution also performs very well for large models although the incremental pattern

matching approach inherent to the EMF-IncQuery solution can easily outperform the FunnyQT solution
when increasing the iteration count of the repair & recheck phase from 10 iterations to 20 or more.
Like with all traditional, search-based pattern matching approaches, FunnyQT’s prime scenario isn’t the
incremental one. If one would measure the time needed for finding all invalid subgraphs and repairing
them all at once, then FunnyQT is a very competitive approach due to its feature of performing parallel
pattern matching automatically for forall-rules on multi-core machines. In scenarios where rules should
find just one match and perform actions on that, FunnyQT’s normal rules that perform lazy pattern
matching also achieve a very high performance.

Another aspect speaking in favor of FunnyQT is its comprehensiveness. Next to the pattern matching
and in-place transformation constructs used for solving this TTC case, it provides APIs and embedded
DSLs suitable for solving almost any conceivable querying and transformation tasks.

References
[1] Martin Fowler (2010): Domain-Specific Languages. Addison-Wesley Professional.
[2] Tassilo Horn (2013): Model Querying with FunnyQT - (Extended Abstract). In Keith Duddy & Gerti Kappel,

editors: ICMT, Lecture Notes in Computer Science 7909, Springer, pp. 56–57.
[3] Tassilo Horn (2015): Graph Pattern Matching as an Embedded Clojure DSL. In: International Conference on

Graph Transformation - 8th International Conference, ICGT 2015, L’Aquila, Italy, July 2015. To appear.
[4] Dave Steinberg, Frank Budinsky, Marcelo Paternostro & Ed Merks (2008): EMF: Eclipse Modeling Frame-

work, 2 edition. Addison-Wesley Professional.
[5] Gábor Szárnyas, Oszkár Semeráth, István Ráth & Dániel Varró (2015): The TTC 2015 Train Benchmark Case

for Incremental Model Validation*. In: Transformation Tool Contest 2015.


	Introduction
	Solution Description
	Deferred Rule Actions
	Match Comparison
	Gluing the Solution with the Framework

	Evaluation
	Conclusion

