The SDMLib solution to the Java Refactoring case for TTC2015

Olaf Gunkel, Matthias Schmidt, Albert Ziindorf

Kassel University, Software Engineering Research Group,
Wilhelmshdoher Allee 73, 34121 Kassel, Germany

olaf.gunkel |[matthias.schmidt|zuendorf@cs.uni-kassel.de

The Solution is hosted under https://bitbucket.org/mschmidt987/java-refactoring-case-ttc-2015-solution-fg-se-uni-kassel

This paper describes the SDMLib solution to the Java Refactoring case for TTC2015 [2]. SDMLib
provides a mechanism for generating an abstraction model of a provided java program. In addition,
SDMLib provides code generation that transforms the whole model or parts of it into java code. Thus,
for the Java Refactoring case we just added a Refactorer that reads a java project and transforms the
program graph according to the intended refactorings. These transformations are collected and applied
to the source code by the SDMLib generator afterwards.

1 Introduction

Two of our studentical assistants found this case very interesting, because they plan to realize a related case
in their master thesis. Their idea is to find bad smells and other structures that should be replaced by a
design pattern implementation. After the detection of such places, the replacement should be applied by an
automatic refactoring. The implementation of the TTC 2015 refactoring case gave them the chance to have
a look on implementing refactorings and estimate the complexity of such code replacement operations.
Furthermore, our team gives a lecture in Graph Engineering at the University of Kassel in which we teach
master grade students about the theoretical definition of graphs and practical approaches of graph matching
and transformation operations. In addition, we teach them to implement a graph matching algorithm to
perform transformations on the previously implemented generic graph. So we are familiar with several
graph transformation techniques and interested in tasks that can be solved with them.

In previous work we already addressed the problem of parsing and generating java source code. To solve
this, we added some features to our tool SDMLib. It is able to represent parsed code into a class model, that
holds enough information to generate updated code afterwards (without changing the present code where it
is not needed). We expected that to be a benefit for us when solving this case.

To address the Java Refactoring case, we used the introduced parser of SDMLib to create the program graph
before the refactoring. Then we have built a new component to realise the refactorings in the graph. This
component uses property change mechanisms to record the changes of the program graph and refactors the
source code by calling the SDMLib generator afterwards.

2 SDMLib support for source code abstraction and generation

Transforming java source code into an abstract model is a complex task that can be accomplished by using
a powerful parser. To solve this, SDMLib provides a recursive descent parser that is able to analyze java
source code files and create an abstract graph model. Using the parser is really easy due to the fact that,
as shown in Listing (1| only the source folder and the package name (where the program lies that should be

© Albert Ziindorf
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
TTC 2015

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 The SDMLib solution to the Java Refactoring case for TTC2015

abstracted) is required.

public void updateFromCode(String srcFolder, String packageName){...}

Listing 1: Signature of the method that calls the parser for java programs

After parsing the source code, SDMLib provides a model that contains all information required for the
refactoring case. The parts of the model, which we use to solve the case, can be seen in Figure

The SDMLib model provides nearly every information that we need for the case. The only missing
information, which is still missing in the solution, is the access-assoziation of class TMember as shown
in figure 2 of the case description[1l]. Despite the fact that the whole model represents complex program
structures, it is comfortable, easy to use and enabled us to fullfill the requirements of the given tasks rapidly.

Attribute Datatype
L " [vave: sm
» Stri value: Strin
superclasses name: String g
0 1 0
ClassModel 0. Clazz
| 1 0.*
name: String
1 0.
Method Parameter
) 1 0.
name: String

Figure 1: Cut of the source code abstraction model

To push our graph changes into the code, SDMLIib supports us with its generator, that updates the parsed
code. After creating a ClassModel by parsing a java project, every included class has its own parser instance,
held by the ClassModel. The parsers are holding all relevant information about their class. For example,
they have symbol tables in which, for every member, information about its position in the sourcecode are
stored. By using this position information, its possible to extract, replace and insert parts of the sourcecode.
Because of this relation, we can use the symbol table to delete, move or insert members in the source code.
Listing 2] shows how to delete a member from the source file of a class. After replacing entries in the class,
we set the boolean field fileChanged to true and commit the changes to the generating class CGUtil. Its
printFile(Parser) Method writes the changes into the source code files.

0 ON N kAW~

AN N AW N -

Albert Ziindorf 3

SymTabEntry memberToDelSTE = clazzParser.getSymTabEntry (delMember);

clazzParser.replace (memberToDelSTE. getStartPos (),
memberToDelSTE . getEndPos ()+1, "");

clazzParser.withFileChanged (true);

CGUtil. printFile (clazzParser);
Listing 2: How to push changes to the source code with SDMLib

3 Solving the Java refactoring case with SDMLib

Our solution covers the three major transformation steps (code to program graph, program graph refactor-
ing and program graph to code) with support for create class-, pull up method-, pull up field- and extract
superclass refactoring.

SDMLib already contains a mechanism to transform code into a program graph. So this part was quite
easy to implement. The method createModelFromSource in Listing [3| shows how SDMLib can be used to
generate a model out of given java source code. Just the path to the project is necessary.

public ClassModel createProgrammGraph(String pathToProject)

{

return refactorer.createModelFromSource(pathToProject);

Listing 3: Creating a object model from source code in a given package path

The resulted program graph now must be transformed according to the intended refactoring. Our algorithm
is split into two parts here. The first part validates that the refactoring can be applied on the given object
structure. For example a pull up method refactoring requires, that all child classes contain the method with
the right signature. This requirement is checked for a valid match. The second step executes the graph trans-
formation for the refactoring. Figure 2| shows an example situation for the pull up method refactoring. The
method of the first child that should be pulled up gets his class relation changed to the parent. Furthermore
we remove the matching methods of all other kids from the graph.

To complete the last step, we decided to add property change listeners to all relevant members of the ob-
ject model. These are the methods, classes and attributes, because the refactorings cause changes to them.
Our aim was to trace the changes. After the refactoring, the generator of SDMLib applies the traced trans-
formations to the source code. For example our so called ClazzSuperClassPropertyFileListener reacts on
changes of the inheritance field of a class. If a new superclass is set, this listener saves an object of the
ClazzSuperClazzPropertyFileChangeStep Class in a Queue. This queue contains all events with their rele-
vant information. To synchronize model and code, we execute all source code transformations according to
the previous done model transformations. In this example, the generator changes the extends clauses of the
affected classes or generates a new superclass.

4 The SDMLib solution to the Java Refactoring case for TTC2015

Parent

<=move method>> —————————————— B + pullMeUp()

ChildOne ChildTwo ChildThree

===~ pullMeUp() | - pullMeUp() | - pullMeUp()

Figure 2: Example Graph Transformation for Pull Up Method Refactoring

Overall this case was made for us, because SDMLib already had many features to help us creating a
program graph and updating the appropriate java source code. Especially the parser and the generator of
SDMLib helped to complete these tasks. Furthermore the resulting program graph fullfilled all our needs
for the refactorings.

4 Accomplished testcases

In Table[I]all execution times und the result of the given cases are presented. Except of one hidden case, our
program succeeds in all tests. The one that fails contains a test where a method of two child classes should
not be pulled up, because one of them is accessing a field, that the other one does not have. Our program
fails here, because our tool does not analyse the semantic of method bodies. So there are no access edges in
our program graph yet.

By writing additional tests, we made sure to cover many other cases. The pull up refactoring ensures that
the parent class is available. Furthermore we detect whether the pull up method or field is already defined
in it, that it has childs and that all childs own the method or field with the right set of parameters. The create
superclass refactorer also filters out the corner cases. It ensures that the superclass is not already existing.
In addition, the refactoring fails with a response if not all chosen classes have the same superclass.

In Table |1} all execution times und the result of the given cases are presented. Except of one hidden case, our
program succeeds in all tests. The one that fails contains a test where a method of two child classes should
not be pulled up, because one of them is accessing a field, that the other one do not have. Our program fails
here, because our tool does not analyse the semantic of method bodies. So there are no access edges in our
program graph.

By writing additional test cases, we make sure to cover many other cases. The pull up refactoring ensures
that the parent class is available. Furthermore we detect whether the pull up method or field is already
defined in it, that it has childs and that all childs own the method or field with the right set of parameters.
The create superclass refactorer also filters out the corner cases. It ensures that the superclass is not already
existing. In addition, the refactoring fails with a response if not all chosen classes have the same superclass.

Albert Ziindorf 5

Case Time(s)| Result

pub_ pum3_1 0 SUCCESS
hidden_csc3_ 1a 0,003 | SUCCESS
hidden_csc1_2 0,001 | SUCCESS
pub_puml_1_paperl | 0,005 | SUCCESS
hidden_cscl_1 0,007 | SUCCESS
pub_cscl_2 0,003 | SUCCESS
hidden_ pum1_2 0,001 | SUCCESS
pub_cscl_1 0,005 | SUCCESS
hidden_ pum1_ 1 0,002 | FAILURE
hidden_csc2_1 0,002 | SUCCESS
pub_puml_2 0 SUCCESS
hidden_ pum2_2 0 SUCCESS
hidden_ pum?2_ 1 0,002 | SUCCESS
hidden_ csc3_ 1 0,006 | SUCCESS
pub_pum?2_1 0,001 | SUCCESS

Table 1: Execution time of all given test cases

References

[1] M. L. Géza Kulcsar, Sven Peldszus. Case Study: Object-oriented Refactoring of Java Programs using Graph
Transformation.

[2] Object-oriented Refactoring of Java Programs using Graph Transformation (TTC’2015).
https://github.com/Echtzeitsysteme/java-refactoring-ttc, 2015.

	Introduction
	SDMLib support for source code abstraction and generation
	Solving the Java refactoring case with SDMLib
	Accomplished testcases

