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This paper summarises a RACR solution of The TTC 2015 Model Execution Case [6]. RAC [ isa
metacompiler library for Scheme [3]]. Its most distinguished feature is the seamless combination of
reference attribute grammars [S]] and graph rewriting combined with incremental evaluation semantics.
The presented solution sketches how these integrated analyses and rewriting facilities are used to
transform fUML activity diagrams [4, 9] to executable Petri nets [[7]. Of particular interest are (1)
the exploitation of reference attribute grammar analyses for Petri net generation and (2) the efficient
execution of generated nets based on the incremental evaluation semantics of RACR.

1 Solution Overview

The solution is realised in the form of two language processors. The first analyses the actual activity
diagram and its inputs and translates them to a Petri net. The second executes generated Petri nets — it is a
Petri net interpreter.

Input for the activity diagram language are textual diagram specifications as given by the tool
challengeE] [6]. A hand written recursive-decent parser is used to instantiate attributed abstract syntax trees
of the diagram language (the parser is straightforward and not investigated in the following). Reference
attribute based analyses extend such abstract syntax trees to abstract syntax graphs that represent the
diagram graph. Based on this name analysis the type well-formedness of activity computations and
control-flow guards and the validity of the diagram are checked. Finally, further attributes are used to
compute a respective Petri net whose execution corresponds to the execution semantics of the given
diagram.

The implementation of the Petri net language is similar. Reference attributes are used to extend the
abstract syntax tree encoding a net to an abstract syntax graph which can be checked for well-formedness.
The actual enabled analyse and transition semantics are implemented by further reference attributes and
respective rewrites using them. Execution of a net corresponds to a simple loop which finds an enabled
transition using the enabled analysis, deletes its consumed tokens and places the produced ones. Thereby,
deleted and produced tokens are refered to by the reference attributes of the name and enabled analyses.
In the end, reference attribute analyses are used to guide rewriting and reduce its implementation efforts.

The next two sections present the sketched solution in detail; an evaluation follows.
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2 TTC 2015: fUML Activity Diagrams in RACR

2 Activity Diagram Language: From Activity Diagrams to Petri nets

The abstract syntax graph of the activity diagram language corresponds to the metamodel given in the task
description [6, Figure 1].

2.1 Abstract Syntax Tree Scheme

The metaclasses and their composit relations determine the solution’s abstract syntax tree scheme. For
example, the following excerpt of the abstract syntax tree scheme specifies the metaconcepts Activity,
Variable, ActivityEdge and ControlFlow:

1 (ast-rule ’Activity->name-Variable*-ActivityNode*-ActivityEdgex*)

2 (ast-rule ’Variable->name-type-initial)

3 (ast-rule ’ActivityEdge->name-source-target)
4 (ast-rule ’ControlFlow:ActivityEdge->guard)

Note, that names starting lowercase on right-hand sides (following the ->) denote terminal children
—i.e., ordinary properties — whereas names strating uppercase denote non-terminals — i.e., composite
relations. Unbounded composites (Klenee closures/unbounded repetitions) are denoted by a * following
the respective non-terminal. Analogous to the task description’s metamodel, ControlFlow inherits from
ActivityEdge denoted by :ActivityEdge. By doing so control-flow edges not only inherit the name, source
and target properties of activity edges, but also their attributes and therefore semantic analyses (in terms
of metamodelling the attributes of a reference attribute grammar are derived properties and methods [2]).

2.2 Name, Type and Well-formedness Analyses

The main purpose of the attribute-based semantic analyses of the activity diagram language is, besides the
actual generation of Petri nets, the provision of information convenient for such code generation. This
comprises the construction of a graph structure encoding all information required for code generation
(name analysis) and checks that ensure diagrams are also valid such that the generated Petri nets do not
misbehave (type and well-formedness analyses).

As a name analysis example consider the association of activity edges with nodes (incoming and
outgoing attribute). To do so, hashmaps from node names to their respective incoming and outgoing edges
are constructed. Given these maps, each node can just lookup its own name to determine its edges:

1 (ag-rule
2 incoming ; List of incoming edges of a node.
3 (Activity (lambda (n) (make-connection-table ->target (=edges n))))

4 (ActivityNode (lambda (n) (hashtable-ref (=incoming (<- n)) (->name n) (list)))))

To query an attribute for its value we just write (=attribute-name n); to query an abstract syntax tree child
or parent we just write (->child/terminal-name n) and (<- n) respectively. In both cases, n is the context
node, i.e., the node the attribute is associated with/which has the child/whose parent is queried respectively.
The lookup of incoming edges at an activity node n works as follows (Line 4): Get the diagram’s hashtable
via (=incoming (<- n)) and query it with the activity node’s name; if it has no entry, return the empty list
(the last (1ist) on Line 4). To construct the actual table (Line 3), we just call a support function which
given an accessor function -> and list of abstract syntax tree nodes queries all its elements and adds them
to a newly constructed hashtable according to their -> value In our case the arguments are just all edges
of the diagram (supported by the =edges attribute) and the target query function ->target. Likewise, the

3The implementation is straightforward and based on hashtable-update! provided by Scheme.
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(b) decision transformation (c) inital, final, merge & executable node transformation

Figure 1: Activity Diagram to Petri net Transformation Rules

name analysis provides attributes to lookup variables, nodes and edges (v-lookup, n-lookup, e-lookup), the
source and target of edges (source, target) and the initial node (initial).
Given the name analysis, type analysis is easy to implement. Consider for example unary expressions,
which, according to the metamodel, must be negations:
1 (UnaryExpression
2 (lambda (n)
3 (define ass (=v-lookup n (->assignee n)))

4 (define op (=v-lookup n (->operandl n)))
5 (and ass op (eq? (->type op) Boolean) (eq? (->type ass) Boolean))))

First we lookup the variable to write the result to and the negated operand (Lines 3 & 4). Afterwards we
ensure both exist and are indeed of type Boolean (Line 5).

Based on type and name analyses we can check well-formedness. As an example consider decisions
and executable nodes:

1 (DecisionNode (lambda (n) (and (in n = 1) (out n >= 1) (guarded n #t))))
2 (ExecutableNode (lambda (n) (and (in n = 1) (out n = 1) (guarded n #f)
3 (for-all =well-typed? (=expressions n)))))

In both cases we use three support functions. The in and out functions ensure the node has a certain
number of incoming and outgoing edges. The guarded function asserts if its outgoing edges can be
control-flows. Decisions must have a unique incoming edge, at least one outgoing edge and their outgoing
edges must be control-flows. Executable nodes must have a unique incoming and outgoing edge which is
not a control-flow. Further, all their expressions must be well-typed.

2.3 Code Generation

2.3.1 Places, Transitions & Arcs

Figure|l| summarises the code generation rules. For each activity node and variable a Petri net place is
constructed (places attribute). In case of variables, the place contains their respective initial value as
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token. Otherwise, only the place of the initial node has a token. The general rule for generating transitions
(transitions attribute) is, that given an activity node, a transition is constructed for each of its predecessor
nodes. The transition just consumes a token from the predecessor’s place and puts it into the node’s place
(Figure([T] (c)).

Special means in case of control-flow edges and executable node’s expressions have to be taken
however. Consider Figure [I] (b). In case of control-flow edges, the respective guard must be checked
before any token is consumed. To do so, it is sufficient to lookup the value encoded in the token of its
respective place. Further, before a token is placed by an outgoing arc, all expressions of the node its
destination place represents must be executed. In the figure these two actions are represented by dashed
arcs from variable places to input arcs and by greek letters representing the expressions to execute.

Forks and joins are exceptions form these default rules however, because of their parallelising and
synchronising semantics. In case of a fork, all its outgoing edges yield a single transition. Likewise, all
incoming edges of a join are translated to a single transition (Figure[I|(a)). As an example consider the
implementation of the transitions attribute of joins:

1 (JoinNode

2 (lambda (n)

3 (define incoming (=incoming n))
4 (list

5 (pn::Transition

6 (->name (car incoming))

7 (map >>? incoming)

8 (1ist (n>> (car incoming)))))))

Based on the join’s incoming edges (Line 3) a new transition named like the “first” incoming edge is
constructed (Lines 5 & 6). The transition has a single outgoing arc (Line 8) and for each incoming edge of
the join one incoming ar(EkLine 7). The incoming and outgoing arcs are constructed by the two support
functions >>? and n>> respectively, which given an activity edge construct a new Petri net arc. Petri net
arcs consist of a single symbolic name referencing the source/target place the arc is consuming/producing
tokens from/to and a list of functions, each deciding for a given token if it is consumable (i.e., of the
expected type)/a single function that given all consumed tokens computes the produced oneﬂ Consider
the construction of incoming arcs via >>7:

1 (define (>>7 n) ; Construct incoming Petri net arc for activity edge.

2 (if (ast-subtype? n ’ControlFlow)

3 (pn::Arc (->source n) (list (=v-accessor (=v-lookup n (->guard n)))))
4 (pn::Arc (->source n) (list (lambda (t) #t)))))

First, it is checked if the given activity edge is a control-flow (Line 2). If it is, the consumption function
has to query the value of its guard, i.e., given a consumable token the arc is enabled if, and only if,
the guard’s value is true. To enable the querying of variable values at runtime (i.e., during Petri net
execution), we construct special accessor functions that return the value of the token of the variable’s
place (v-accessor attribute). In case of a control-flow, >>7 therefore finds the guard variable in the activity
diagram via =v-lookup and defines its accessor function to be the consumption function of the arc (Line 3).
If the argument of >>7 is not a control-flow, the consumption function just returns frue, i.e., whenever
a consumable token is given the arc is enabled (Line 4). In both cases, the place to consume a token

#Incoming and outgoing arcs are consuming and producing tokens when a transition is fired respectively.

S5Thus, coloured, weighted Petri nets are supported (arbitrary many tokens of different types can be consumed from a single
incoming arc and arbitrary tokens produced by a single outgoing arc). For the semantics of activity diagrams however, we only
need one token type (except tokens encoding variable values) and places always have at most a single token.
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from is the given activity edge’s source, i.e., (->source n). All of this happens before runtime. When
the generated Petri net is executed the consumption function and source are already settled by the code
generation; no runtime lookup is required.

2.3.2 Variables, Expressions & The Execution of Executable Nodes

As already explained, each variable is translated to a place containing a single token encoding its value.
The v-token attribute refers for each variable to the respective token encoding its runtime value. Its
implementation queries the place representing the variable (places attribute), its list of tokens and finally
the list’s first and only child:

1 (ag-rule
2 v-token ; The Petri net token encoding the runtime value of the variable .
3 (Variable (lambda (n) (ast-child 1 (pn:->Token* (=places n))))))

Remember, that RACR is incremental and caches all attributes. As long as information places depends on
is not changed — like in the given tool challenge scenario — it will construct a new Petri net place only
the first time queried; further queries will evaluate to this very place. This caching behavior holds for all
attributes of the activity diagram language. Based on v-token, implementing v-accessor is straightforward:

1 (ag-rule
2 v-accessor ; Function returning the runtime value of the variable .
3 (Variable (lambda (n) (define token (=v-token n)) (lambda x (pn:->value token)))))

First, lookup the token representing the variable’s value using v-token. Afterwards, return a function in
whose closure the token is and which uses the Petri net language to query its value via pn:->value.

After investigating how runtime values of variables are encoded and can be accessed, it remains to
show how they are changed by expressions. The computation attribute generates for each expression a
function assigning its left-hand the value of its right-hand. For example, consider unary expressions:

1 (UnaryExpression

2 (lambda (n)

3 (define assignee (=v-token (=v-lookup n (->assignee n))))

4  (define opl (=v-accessor (=v-lookup n (->operandl n))))

5 (define op (->operator n))

6 (lambda () (rewrite-terminal ’value assignee (op (op1))))))

First, the token representing the assignee is lookedup (Line 3); afterwards, the accessor function of the
operand variable and the operation to perform (Lines 4 & 5). These information are the closure of the
function to construct. The function itself uses RACR’s rewrite-terminal function to change the value
of the assignee to the one computed by applying the operator on the value the operand’s value accessor
returns (Line 6). Again, all lookups are at generation time of the Petri net and not runtime.

The computation attribute is defined for every activity node. It generates a function whose execution
represents the execution of the respective activity node at runtime. This comprises three runtime actions:
(1) tracing the node’s execution, (2) computing its expressions if any (i.e., if the node is an executable
node) and (3) establishing its offers for successor nodes:

1 (ActivityNode

2 (lambda (n)

3 (define executed (->name n))

4 (lambda x (trace executed) (list #t))))
5 (ExecutableNode

6 (lambda (n)
7 (define executed (->name n))
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8 (define computations (map =computation (=expressions n)))
9 (lambda x (trace executed) (for-each (lambda (f) (£f)) computations) (list #t))))

Note, that the computation functions generated by the computation attribute accept arbitrary many argu-
ments and always return a singleton list with element true. Their tracing and expression execution is
obvious (Lines 4 & 9); how token offers are established we still have to clarify however.

As already explained, for each activity node a place is generated. A token in such a place indicates
that the activity node provides an offer to its successors. According to the semantics of activity diagrams,
the offers of an activity edge are provided immediately after executing its expressions. The computation
function of an activity node therefore has to be executed immediately before a token is put into its
respective place, i.e., whenever an outgoing arc of a transition places a token in its place. Thus, outgoing
arcs must apply the computation function of their target. The implementation of >>n therefore is:

1 (define (n>> n) ; Construct outgoing Petri net arc for activity edge.

2 (pn::Arc (->target n) (=computation (=target n))))

As explained before, an outgoing arc consists of a symbolic name referencing the target place and a
production function that given the consumed tokens computes the ones placed in its target place. The
functions generated by the computation attribute are valid production functions; they accept arbitrary many
consumed tokens and place a single true token.

3 Petri net Language: Incremental Execution of Nets

Similar to the activity diagram language, also the Petri net language provides attributes to lookup transitions
and the source/target places of arcs. The enabled analysis just is a special kind of name analysis, searching
for consumable tokens and returning the tokens consumed if a transition is enabled and false if it is
disabled. To fire transitions boils down to reuse the enabled analysis to delete consumed tokens and add
produced which is accomplished using RACR’s rewrite-delete and rewrite-add functions [1]. Because of
space considerations we will not investiagte the source code of the Petri net language however. Interested
readers can consult its implementation, in particular the enabled? attribute and fire-transition! function.
Important for the following benchmarks are the automatic incremental evaluation semantics of RACR.
When an abstract syntax graph information is queried throughout attribute evaluation, RACR maintains
a dependency to remember that the attribute’s value depends on the queried information. If an abstract
syntax graph information changes, RACR invalidates all attributes transitively depending on it. The
enabled analysis of the Petri net language is no exception since it is implemented using attributes. It
depends on tokens that would be consumed or are missing, including the special case of tokens encoding
variable values. For example, when a new value is assigned to a variable via rewrite-terminal as shown
in the previous section, the enabled status of transitions depending on its value is reevaluated, if, and
only if, they either were enabled or, although all tokens they consume are provided, still were disabled.
Without special implementation efforts by the developer, RACR optimises the execution semantics.

4 Evaluation

Figure [2] summarises the size of the implementation in terms of lines of code, excluding empty lines and
pure comments. The difference between the size of the solution parts and their source code files is due to
boilerplate code for library imports and exports not being accountable to any certain task. Also, the abstract
syntax graph accessors are boilerplate code that could be generated and should not be counted. They are
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Source Code File Solution Part (language task) LOC
Activity diagram language (507): 499
analyses.scm: 255 AST specification 18 4%
ASG accessors (constructors, child & attribute accessors) 65 13%
Name analysis 32 6%
Type analysis 23 5%
Well-formedness 32 6%
Petri net generation 90 18%
parser.scm: 2/9 Parsing 214 43%
user-interface.scm: 33 Initialisation & execution 25 5%
Petri net language (255): 200
analyses.scm: /02 AST specification 9 5%
ASG accessors (constructors, child & attribute accessors) 32 16%
Name analysis 13 7%
Well-formedness 10 5%
Enabled analysis 29 15%
execution.scm: 43 Running and firing semantics 31 16%
user-interface.scm: 80  Initialisation & Petri net syntax 33 17%
Read-eval-print-loop interpreter 19  10%
Testing nets (marking & enabled status) 24 12%

Figure 2: Solution Size (lines of code, LOC)

Tasks Performed Test Cases (testperformance_variant) Time Spend
(later tasks include previous ones) 1 2 3.1 3.2 (lowest / highest / average)
Activity diagram parsing 831/831 871/871 875/875 718/718 41% 1 86% I 50%
Activity diagram well-formedness 926 /95 1017/146  1079/204  739/21 3% 1 11% 1 7%
Petri net generation 1042/116  1061/44 1196/ 117 741172 0% / 6% | 4%
Petri net well-formedness 12207222  1230/169 1466/ 270 746 /5 1% / 14% / 10%
Petri net execution 2026 /806  1776/546 1912/446  831/85 10% / 40% / 29%

Figure 3: Time Measurements (times in ms: total / task-only)

mostly one liners to introduce convenient functions for node constructions and child and attribute querying.
For example, in the previous listings we wrote (->target n) to query the target of an activity edge. RACR
provides generic query functions however, such that the query would be (ast-child ’target n). To this
end we specify the abstract syntax graph accessor (define (->target n) (ast-child ’target n)) which
is obviously boilerplate. Finally, note that the implementation of user interface functionallity makes up
huge parts of the implementation (in case of the activity diagram language 48%; for the Petri net language
39%). To develop language user interfaces is not subject of RACR however; input parsing and abstract
syntax tree instantiation therefore should also be excluded.

Figure [3| presents the results of benchmarking the performance test cases given by the tool challenge.
The becnhmarks have been executed on a MacBook Air (Mid 2011) with a 1.7GHz Intel Core i5 CPU, 4GB
1333MHz DDR3 RAM and Mac OS 10.10.3. As Scheme system Larceny 0.98 (General Ripperﬂ was used.
Each test case was performed with increasing numbers of tranlation tasks, such that the actual times spend
for parsing, well-formedness checks, Petri net generation and their actual execution can be investigated.
For example, testperformance_variant?2.ad spend 169ms on checking the well-formedness of its

Shttp://www.larcenists.organd https://github.com/larcenists/larceny
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Petri net making a total of 1230ms with Petri net execution excluded. Of this 1230ms, 44ms where spend
to generate the Petri net, 146ms to check well-formedness of the activity diagram and 871ms to parse
the test file and construct an abstract syntax tree. The activity diagram parsing time includes loading the
Larceny virtual machine, RACR and the activity diagram and Petri net languages. The percentage of time
spend for a certain task is w.r.t. a test case’s total execution time. It is only shown for the test cases with
the lowest and highest percentage spend for each task (highlighted by colouring the time of the respective
test case). The average percentage is the sum of all test cases to perform a certain task devided by the sum
of their total execution times. Again, readers should exclude parsing times when judging RACR.
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