
Solving the TTC 2014 Movie Database Case with

UML-RSDS

K. Lano, S. Yassipour-Tehrani
Dept of Informatics, King’s College London

April 28, 2014

Abstract

This paper describes a solution to the Movie Database case using UML-RSDS. The solu-
tion specification is declarative and logically clear, whilst the implementation (in Java) is of
practical efficiency.

1 Case Specification

Figure 1 shows the metamodel and use cases of the case specified in UML-RSDS. For flexibility,
we separate each task of the case study in a separate use case. Each use case defines a sub-
transformation of the problem.

Figure 1: Movie specification in UML-RSDS

Task 1 We implement this task by a use case task1 which has parameter n : Integer and a single
postcondition

Integer.subrange(0,n-1)->forAll(x | Movie.createPositive(x) & Movie.createNegative(x))

1

where createPositive is a static operation of Movie which creates the 5 movies, 3 actors and 2
actresses of each positive case, and createNegative is a static operation of Movie which creates the
5 movies, 2 actors and 3 actresses of each negative case.

createPositive is:

createPositive(n : Integer)

pre: n >= 0

post:

Movie->exists(m1 | m1.rating = 10*n &

Movie->exists(m2 | m2.rating = 10*n + 1 &

Movie->exists(m3 | m3.rating = 10*n + 2 &

Movie->exists(m4 | m4.rating = 10*n + 3 &

Movie->exists(m5 | m5.rating = 10*n + 4 &

Movie.createPositiveActors(n,m1,m2,m3,m4,m5) &

Movie.createPositiveActresses(n,m1,m2,m3,m4,m5))))))

where createPositiveActors creates the actors a, b and c and links them to the movies as required,
and likewise for createPositiveActresses. The definition of createNegative is similar.

Task 2 We implement this task by a use case task2 which has a single postcondition:

p : Person & q : Person & p.name < q.name &

comm = p.movies /\ q.movies & comm.size > 2 =>

Couple->exists(c | p : c.p1 & q : c.p2 & c.commonMovies = comm)

This constraint creates a couple c for each distinct pair p and q of persons whose set of com-
mon movies comm has size at least 3. Only one couple is created for each pair because of the
restriction that p1 always holds the person with the lexicographically smallest name. The imple-
mentation is a double linear iteration through Person and its execution time should therefore be
of order Person.size ∗ Person.size. However, efficient computation of set intersections is needed
for situations where the sets of common movies become large.

Task 3 This is implemented by a use case task3 with a single postcondition operating on context
Couple:

avgRating = (commonMovies->collect(rating)->sum()) / commonMovies.size

It sets the average rating of each couple equal to the average of the rating of each of their common
movies (if two or more movies have the same rating, these ratings are all counted separately in
the sum). Its worst-case execution time is of order Couple.size ∗Movie.size.

Extension task 1 The set of existing couples can be sorted in different orders using the sortedBy
operator. For example:

Couple→sortedBy(−avgRating)

is the sequence of couples in order of decreasing avgRating .
However this would be very inefficient in this situation, where only the best 15 elements with

respect to a given measure are needed, out of possibly millions of elements.
In UML-RSDS it is possible to extend the system library with new functions, which are provided

with an implementation by the developer. Here we need a version of sortedBy which takes a
bound on the number of elements to return: SortLib.sortByN (s, s→collect(e),n) returns the best
n elements of s according to e, sorted in ascending e-value order. Semantically it is the same as
s→sortedBy(e).subrange(1,n).

We define an external module SortLib with sortByN as a static operation, and provide (hand-
written) Java code for this operation, making use of the existing UML-RSDS merge sort algorithm.
Two versions of SortLib are needed, one for Java 4 and another for Java 6. The use case then has
the postcondition:

2

bestcouples = SortLib.sortByN(Couple.allInstances,

Couple->collect(-avgRating), 15) =>

bestcouples->forAll(c | c->display())

A toString() : String operation is added to Couple which returns a display string consisting of the
average score, number of movies and persons of each couple.

An example of the output is:

Couple avgRating 9992.5, 4 movies (a9993; a9994)

Couple avgRating 9992.0, 3 movies (a9990; a9992)

Couple avgRating 9992.0, 3 movies (a9990; a9993)

Couple avgRating 9992.0, 3 movies (a9990; a9994)

Couple avgRating 9992.0, 3 movies (a9991; a9992)

Couple avgRating 9992.0, 3 movies (a9991; a9993)

Couple avgRating 9992.0, 3 movies (a9991; a9994)

Couple avgRating 9992.0, 3 movies (a9992; a9993)

Couple avgRating 9992.0, 3 movies (a9992; a9994)

Couple avgRating 9991.5, 4 movies (a9990; a9991)

Couple avgRating 9982.5, 4 movies (a9983; a9984)

Couple avgRating 9982.0, 3 movies (a9980; a9982)

Couple avgRating 9982.0, 3 movies (a9980; a9983)

Couple avgRating 9982.0, 3 movies (a9980; a9984)

Couple avgRating 9982.0, 3 movies (a9981; a9982)

for the test case with N = 1000.
Similarly, couples can be displayed in decreasing order of the number of common movies:

bestcouples2 = SortLib.sortByN(Couple.allInstances,

Couple->collect(-commonMovies.size), 15) =>

bestcouples2->forAll(c | c->display())

Extension task 2 This use case assumes that task 2 has been completed. To generate all cliques
(of arbitrary size) we first generate those of size 2, based on the couples:

Clique->exists(c | c.persons = p1 \/ p2 & c.commonMovies = commonMovies)

This constraint iterates over Couple and its time complexity is of order Couple.size.
Cliques of size n+1 are then generated from those of size n:

cl : Clique & p : Person & p.name > cl.persons.name->max() &

comm = p.movies /\ cl.commonMovies & comm.size > 2 =>

Clique->exists(c | c.persons = cl.persons->including(p) & c.commonMovies = comm)

This iterates over the set of existing cliques and persons. The logical interpretation is that this
constraint holds true at completion of the sub-transformation, ie., that Clique is closed wrt the
construction step of building a clique of size n+1 from one of size n:

∀ cl : Clique; p : Person; comm · p.name > cl .persons.name→max () and
comm = p.movies ∩ cl .commonMovies and comm.size > 2 ⇒

∃ c : Clique · c.persons = cl .persons→including(p) and c.commonMovies = comm

Consideration of the examples suggests that persons should be ordered.
A fixed-point implementation of this 2nd constraint will be automatically selected by the

UML-RSDS code generator, since Clique is both read and written by the constraint.
This implementation terminates, because each application of the rule extracts a new previously

undiscovered clique from the data and hence reduces by 1 the number of such undiscovered cliques,
but the bound on this number is exponential: 2Person.size in the worst case where every person is
in every movie.

To improve the efficiency, a size limit on the new clique can be imposed, by only considering
cliques smaller than a bound supplied as parameter to the use case. Alternatively, we can split
the process into incremental steps. A use case couples2cliques creates a 2-clique for each couple:

3

Clique->exists(c | c.persons = p1 \/ p2 & c.commonMovies = commonMovies)

This constraint iterates over Couple.
A use case nextcliques generates cliques of size n + 1 from those of size n:

persons@pre.size = n & p : Person & p.name > persons@pre.name->max() &

comm = p.movies /\ commonMovies@pre & comm.size > 2 =>

Clique->exists(c | c.persons = cl.persons@pre->including(p) & c.commonMovies = comm)

This iterates over Clique@pre.
The nextcliques implementation is a linear iteration over Clique ∗Person, rather than a fixed-

point iteration.

Extension task 3 This is implemented by a use case exttask3 with a single postcondition
operating on context Clique:

avgRating = (commonMovies->collect(rating)->sum()) / commonMovies.size

Extension Task 4 As with extension task 1, this can be achieved using a specialised sorting
operator that returns the best 15 cliques according to a valuation expression. Only cliques of a
given size n are of interest:

ncliques = Clique->select(persons.size = n) &

bestcliques = SortLib.sortByN(ncliques, ncliques->collect(-avgRating), 15) =>

bestcliques->forAll(c | c->display())

Similarly for display of cliques by number of common movies:

ncliques2 = Clique->select(persons.size = n) &

bestcliques2 = SortLib.sortByN(ncliques2, ncliques2->collect(-commonMovies.size), 15) =>

bestcliques2->forAll(c | c->display())

2 Results

To run the use cases for couples from the command line, type

java Controller couples N

where N is the synthetic data set required (1000, 2000, etc). This runs task1, task2, task3,
extension task 1, and displays the time taken for task2. The generated data is in the file out.txt.

Table 1 shows the execution times of the tasks for the synthesised data sets, using an unopti-
mised Java 4 implementation (in which sets are represented as Vectors).

N task2 task3 exttask1
1000 50s 16ms 31ms
2000 200s 31ms 63ms
3000 437s 46ms 78ms
4000 815s 50ms 62ms
5000 1,226s 59ms 103ms

Table 1: Execution times for synthetic data sets (Java 4)

The hardware was a single processor Intel i3 Windows 7 laptop, with this process allocated
25% of CPU.

We also implemented the transformation using the Java 6 generator of UML-RSDS. The Java
6 implementation uses HashSet for set-valued associations such as commonMovies, so that inter-
section and other set operations should be more efficient. Surprisingly this implementation was
less efficient on the synthetic data (Table 2).

4

N task2
1000 110s
2000 429s
3000 917s

Table 2: Execution times for synthetic data sets (Java 6)

There does not appear to be any way to further optimise the search for couples using Java.
Using the filter architectural pattern we could pre-filter the data to reduce input model size by
removing all movies with fewer than 2 (fewer than M for M-cliques) cast members, and all people
with fewer than 3 movies [1], (Figure 2).

Figure 2: Introducing filtering

We will investigate the efficiency of C# and C++ implementations prior to the TTC workshop.
To run the use cases for cliques from the command line, type

java Controller cliques N

where N is the synthetic data set required (1000, 2000, etc). This runs task1, task2, cou-
ples2cliques, nextcliques (for parameters 2, 3, 4 to generate the cliques of sizes 3, 4, 5 successively),
extension task 3 and extension task 4 (for cliques of sizes 3, 4, 5 separately) and displays the time
taken for the exttask2 steps. The generated data is in the file out.txt.

Table 3 shows the execution time for extension task 2 for clique sizes from 3 to 5. These are

N exttask2 (3) exttask2 (4) exttask2 (5)
1000 74s 73s 37s
2000 282s 270s 135s
3000 627s 621s 307s
4000 1098s 1093s 547s

Table 3: Execution times for clique generation for synthetic data sets, Java 4

computed using an incremental approach: first cliques of size 2 are created from couples, then
cliques of size 3 from those of size 2, etc. The execution times are those for the individual steps.

The transformation has also been applied to the three IMDb models imdb-0005000-49930,
imdb-0010000-98168, imdb-0030000-207420. We have converted the CSV versions of these models
into UML-RSDS model format, in the files in1.txt, in2.txt, in3.txt respectively. To apply the
transformation to these, invoke it as:

java Controller mcouples in1.txt

5

and likewise for in2.txt, in3.txt. This runs task2, task3, extension task 1, and displays the time
taken for task2. The generated data is in the file out.txt.

Data set task2
in1.txt 890s
in2.txt 4783s
in3.txt More than 5000s

Table 4: Execution times for IMDb data sets (Java 4)

The converter program is in CSVParser.java, it takes file IMDd.txt as input and produces file
in.txt.

To run the use cases for cliques for the IMDb files from the command line, type

java Controller mcliques in1.txt

This runs task2, couples2cliques, nextcliques (for parameter 2 to generate the cliques of size 3),
extension task 3 and extension task 4 (for cliques of size 3) and displays the time taken for the
nextcliques step. The generated data is in the file out.txt.

Model exttask2 (3)
in1.txt 527s
in2.txt More than 2000s

Table 5: Execution times for 3-clique generation for IMDb data sets, Java 4

3 Optimisation using filter pattern

The idea of this transformation pattern is to filter input models to exclude elements which cannot
be matches for the main transformation, therefore reducing model size and the search space of the
main transformation.

In this case study, no movie with fewer than 2 cast members can contribute to a couple or
clique, nor can any person who is in less than 3 movies. Therefore the filter can be written as:

persons.size < 2 => self->isDeleted()

on Movie, and

movies.size < 3 => self->isDeleted()

on Person. These constraints are mutually dependent (deleting movies may lead to further possible
deletions of people, and vice-versa) so are iterated in a fixpoint loop. The execution time is bounded
by Movie.size + Person.size.

Applied between task1 and task2, this filter removes all the negative case test data from
the synthetic models, reducing the model size by 50%. Applied to the IMDb data substantial
reductions also occur: the 44931 persons in the first data set are reduced to 2809 by the filter, and
the 5000 movies to 1366.

Table 6 shows the results using the filter pattern for the synthetic data sets.
There is therefore an overall reduction in processing time using this approach.
Table 7 shows the optimised results for the IMDb data sets.
Of course, if a direct search for 3-cliques were used, pre-filtering could also exclude movies with

fewer than 3 cast members.
The options described above can also be executed with the filter option, by invoking

6

N filter task2
1000 16s 13s
2000 70s 53s
3000 153s 122s
4000 266s 215s
5000 438s 325s

Table 6: Optimised execution times for synthetic data sets (Java 4)

Data set filter task2
in1.txt 23s 6s
in2.txt 128s 28s
in3.txt 1759s 262s

Table 7: Optimised execution times for IMDb data sets (Java 4)

java FController couples N

java FController cliques N

java FController mcouples in1.txt

java FController mcliques in1.txt

from the command line.
The implemented transformation may be obtained at:

http://www.dcs.kcl.ac.uk/staff/kcl/movies.zip

It has also been uploaded to the umlrsds TTC14 workspace on SHARE, in the Desktop/rsync
directory (remoteUbuntu12LTS TTC14 umlrsds2). The execution times in the SHARE environ-
ment are slightly lower than those given above.

References

[1] K. Lano, S. Yassipour-Tehrani, Model transformation architectural patterns, Dept of Infor-
matics, King’s College London, 2013.

[2] T. Horn, C. Krause, M. Tichy, The TTC 2014 Movie Database Case, TTC 2014.

Model exttask2 (3)
in1.txt 42s
in2.txt 147s

Table 8: Optimised execution times for 3-clique generation for IMDb data sets, Java 4

7

