
The SDMLib solution to the MovieDB case for TTC2014

Christoph Eickhoff1, Tobias George1, Stefan Lindel1, Albert Zündorf1

Kassel University, Software Engineering Research Group,
Wilhelmshöher Allee 73,
34121 Kassel, Germany

cei|tge|slin|zuendorf@cs.uni-kassel.de

Abstract. This paper describes the SDMLib solution to the MovieDB case for the TTC2014 [4]. We
explain a model transformation based solution and a plain Java solution based on a set-based model
layer generated by SDMLib. In addition we discuss several refactorings we have used to improve the
runtime performance of our solutions. Especially, we show an explicitly parallel solution.

1 Introduction

SDMLib [3] is a light-weight model transformation approach based on graph grammar theory. SDMLib pro-
vides a Java API that allows to build a class model and to generate an SDMLib specific Java implementation
for it. The generated model classes provide bidirectional association implementations, a reflection layer, and
XML and JSON serialization mechanisms. In addition, SDMLib generates a set based layer for the model,
where each method provided for a single model object is also provided for a set of such model objects. This is
frequently used for model navigation e.g in actor1.getMovies().getPersons(). Here we ask an actor for the set
of movies the actor has done and on this set we ask for the set of persons that participated in (at least one
of) these movies. Note, SDMLib computes a flat set of persons not a set of sets of persons. Finally, SDMLib
generates a pattern matching layer for the model that provides classes to build model specific object patterns
and model transformations.

To solve the MovieDB case, we mainly use the set based layer. This enables a very efficient implementation
of the clique detection task. However, for completeness, we also provide a solution using SDMLib model
transformations.

2 The solution

Recently, we have enabled SDMLib to enhance EMF [2] Java classes with a set based and a model trans-
formation layer. Thus, we might have developed our solution on top of an EMF model implementation.
However, we suspect the EMF model implementations to be inefficient in certain cases and thus we decided
to use SDMLib’s model implementation. Fortunately, SDMLib is able to load an Ecore file and to translate
the EMF class model into an SDMLib class model, cf. Figure 1. We have extended the original class model
with class Ranking used to store the 15 best cliques with respect to average ranking and number of movies.

2 Christoph Eickhoff, Tobias George, Stefan Lindel, Albert Zündorf

Fig. 1. Class Model imported from Ecore

Figure 2 shows the SDMLib model transformation used to find couples / cliques of two. The search starts
with pattern object p1 that matches to any Person in our database. Via Movie m2 we look for any Person

p3 that has collaborated with p1. The first constraint on the right of Figure 2 requires that the name of p3
is alphabetically later than the name of p1. This avoids mirrored couples. Next, the subpattern o6 searches

The SDMLib solution to the MovieDB case for TTC2014 3

for all movies m7 done by both persons. Each such movie is added to a new Clique object c4. The second
constraint of Figure 2 ensures that at least three movies have been added to our new clique. If this is the case,
action 1: of figure 2 calls method addToCliques that stores the clique and maintains ranking tables. Finally,
the last action 2: calls another model transformation lookForCliques that looks for larger cliques. (Note,
for technical reasons the graphical representation of our model transformation does not show all details of
the execution order. Such details are revealed by the Java code that build up the model transformation. This
Java code is omitted for lack of space.)

Fig. 2. Look for Couples Model Transformation

4 Christoph Eickhoff, Tobias George, Stefan Lindel, Albert Zündorf

The lookForCliques model transformation shown in Figure 3 takes a Clique c1 and searches through
the common movies m2 for a new Person p3. An additional constraint ensures that the name of the last
person (which is computed separately) in the clique is alphabetically lower than the name of the new person
p3. Then the subpattern o6 searches for all movies m7 that belong to the clique c1 and to the new person p3.
The second constraint of Figure 3 ensures that at least three common movies are found. For each match, a
new Clique object c4 is created and each common movie m7 is attached to it. Finally, subpattern o9 attaches
all persons p10 to the new clique and the new person p3 is attached, too. Through additional constraints
each new clique is added to the rankings (method call addToCliques) and we call method lookForCliques

recursively to find larger cliques. (An additional condition (not shown) terminates this recursion e.g. as soon
as cliques of size 5 are reached.)

Fig. 3. Look for Cliques Model Transformation

To be honest, the initial versions of our clique finding methods have been built using the set based model
layer generated by SDMLib. In Listing 1.1 line 4 we first check whether the wanted clique size is already

The SDMLib solution to the MovieDB case for TTC2014 5

reached. Method lookForCliques gets a set of common movies and a set of persons from the previous clique
as parameter. The idea was to avoid to build clique objects explicitly to save memory. Reading the case
description in more detail, we noticed that creating cliques explicitly is mandatory. We do it now in method
addToCliques. There we use an extra flag to toggle clique creation in order to measure the time overhead
this actually causes.

Line 6 of listing 1.1 clones the set of persons passed as parameter and line 7 adds a dummy person
to it. Each time we find a new person that forms a clique with the passed persons, we will replace the
extra person, cf. line 17. Note, class PersonSet is essentially an java.util.ArrayList. Originally, SDM-
Lib uses java.util.LinkedHashSet as implementation for model sets. However, the benchmarking has
shown that this causes a large runtime and memory overhead. Thus for the MovieDB case, we enabled
java.util.ArrayList based model sets. On insertion, the ArrayList based model sets still check whether
the set already contains the new element. This is done with linear search and becomes inefficient for large
model sets. However in the MovieDB case the sets of movies and the sets of persons we handle contain
only some 20 up to to some 100 elements and the search overhead can be neglected. On the other hand, an
ArrayList consists only of a single object, the array object. While a LinkedHashSet employs extra internal
Node objects for each element you add to the set. In this benchmark the allocation of these internal Node
objects causes a huge runtime and memory overhead. In the inner loop of listing 1.1 on each iteration we
form a new person set consisting of the person set newClique created in line 6 and a new person p. Ususally,
we would call something like newClique.remove(oldPerson) and newClique.add(p) to replace the last
person in newClique. By switching to ArrayLists and using the dummyPerson we achieve the same effect
more efficiently by calling newClique.set(persons.size()-1), cf. line 17.

1 private void l ookForCl iques (MovieSet commonMovies , int wantedSize ,
2 PersonSet persons)
3 {
4 i f (wantedSize <= maxCliqueSize)
5 {
6 PersonSet newClique = (PersonSet) persons . c l one () ;
7 newClique . add (dummyPerson) ;
8
9 f o r (Person p : commonMovies . getPersons ())

10 {
11 i f (persons . get (persons . s i z e ()−1) . getName () . compareTo (p . getName ()) < 0)
12 {
13 MovieSet i n t e r s e c t i o n = commonMovies . i n t e r s e c t i o n (p . getMovies ()) ;
14
15 i f (i n t e r s e c t i o n . s i z e () >= 3)
16 {
17 newClique . s e t (wantedSize −1, p) ;
18
19 addToCliques (i n t e r s e c t i o n , newClique) ;
20
21 // look for larger cliques

22 lookForCl iques (commonMovies , wantedSize + 1 , newClique) ;
23 }
24 }

6 Christoph Eickhoff, Tobias George, Stefan Lindel, Albert Zündorf

25 }
26 }
27 }

Listing 1.1. Set Base Model Transformation lookForCliques

Line 9 loops through the set of all persons that participate in one of the common movies passed as
parameter. Note the call to commonMovies.getPersons(). Parameter commonMovies is of type MovieSet.
This class is generated by SDMLib as an addition to the model class Movie. Class MovieSet provides all
methods provided by class Movie and extends these methods to work on sets of objects. Thus method
MovieSet::getPersons() calls methods Movie::getPersons() on each element of commonMovies. Method
Movie::getPersons() has return type PersonSet, i.e. the set of persons working on a given movie. Method
MovieSet::getPersons() collects these PersonSets within a (flat) result set using a result.union(newSet)
operation. In our method lookForCliques this this set based getPersons operation saves us an explicit
outer loop through the commonMovies set and we do not need an extra data structure to keep track of already
handled persons.

Similarly, line 13 uses the set based method intersection to compute the set of common movies from
the parameter commonMovies and the movies of the current person p.

The if statement in line 11 ensures that we consider only persons with a name later than the name of the
last person in newClique. This avoids multiple cliques of the same persons that differ only in the ordering.
The if statement in line 15 ensures that the intersection of movies has at least 3 entries. Thus, when we
reach line 17 we have found a new clique and line 19 adds this new clique to the rankings and line 22 tries
to extend the new clique recursively.

3 Performance

The first version of our solution used the SDMLib generated model implementation, the set based model
layer, and plain Java code as outlined in listing 1.1. In that version we did not create all found cliques
explicitly but we only collected the 15 best cliques for each ranking. Without further optimizations the 20
000 synthetic MovieDB case needed about 50 seconds on a 2.67 GHz Intel i7 dual core (M60) 64 bit CPU
(with hyper threading) and 8 GB main memory running windows 7. We call this our reference laptop from
now on. Actually, first measurements with different case sizes for the synthetic MovieDB produced strange
results where e.g the 10 000 case was much slower then the 20 000 case. We figured out that the Java
virtual machine hot compile has a strong influence on our measurements. Hot compile causes up to 10 times
speed-ups. Thus we added a warm up phase to our benchmark where we run a large synthetic case just to
trigger the hot compile.

Then we replaced the java.util.LinkedHashSet implementation used for Cliques to store sets of com-
mon movies and sets of persons by an java.util.ArrayList based implementation. Our ArrayList based
implementation still ensured set semantics, i.e. before adding e.g. a new Person object, it checks whether
this object is already contained. This change also affected a dummy Clique object used to store the set of
all movies and all persons of the current movie database and as start for the clique detection. If you antic-
ipate the size, an ArrayList is allocated in a single heap operation and uses very little memory overhead.
Contrarily, a LinkedHashSet internally uses one array to hold the hash table and additional Entry objects
for each model object added to it. These Entry objects server as placeholders within the hash tables buckets.
Thus for n model elements a LinkedHashSet allocates n Entry objects plus one array for the hash table
itself. Especially the allocation of the Entry objects proofed as very time consuming. Avoiding this for the
Cliques resulted in a speed-up of factor 5.

The SDMLib solution to the MovieDB case for TTC2014 7

Next, the call for solutions states that the benchmark shall be done on workstation with an 8 core CPU.
Thus we redesigned our solution to run in multiple threads, cf. listing 1.2. Line 2 creates a pool of threads
to run multiple tasks in parallel, one for each CPU core. Next, line 4 splits the caseSize into multiple
chunks, one for each thread. The loop of line 8 creates CliqueTask objects for each chunk in line 11. Each
CliqueTask gets the list of all persons, the start index i of its chunk and the chunkSize as parameter (plus
some boolean flags discussed later). CliqueTask implements java.util.concurrent.Callable and thus
line 13 can submit the CliqueTask objects to our thread pool for excecution. The submit operation returns
a Future object that is used in line 26 to retrieve the Ranking for the considered chunk. Note, the operation
future.get is blocked until the corresponding thread / CliqueTask has returned a result. For each clique
size (from 2 to 5) a Ranking contains a list of the 15 best ranked cliques plus a list for the 15 cliques with
the largest number of common movies plus the total number of cliques of that size for that chunk. Thus the
loop from line 28 to line 36 collects the ranking data from each chunk for each clique size. Later on, the
resulting overall cliqueTabList elements are sorted again and the overall 15 best cliques are reported.

On our dual core reference laptop this created a speed-up of roughly factor 2. We have also tested it
on a 12 core workstation where we achieved a speed-up of factor 10. Thus, for the MovieDB, the explicit
parallelization actually gives you a speed-up corresponding to the number of CPU cores you have, i.e. the
case is easy to parallelize. Thinking about it, our couple and clique finding always starts with a first person
and we than we (recursively) add more persons to this nucleus. Obviously, this can be done for each person
in parallel without interference. We just do it in larger chunks to minimize the overhead caused by combining
the computation results. Note, for the real data cases, different chunks of persons may produce very different
numbers of cliques. Some persons have done only one movie and do not create cliques. Some persons have a
large number of movies and produce a large number of cliques. Thus, different chunks need a very different
amount of time to complete. To address this, for the real data cases we use 10 chunks per available processor.
Our thread pool then schedules the CliqueTasks to the available threads as soon as a task has completed
and thus the work load of all threads is balanced.

1 . . .
2 ExecutorServ i ce executor = Executors . newFixedThreadPool (p r o c e s s o r s) ;
3
4 int chunkSize = c a s e S i z e / p r o c e s s o r s ;
5 . . .
6 System . out . p r i n t ("\n[") ;
7
8 f o r (int i = 0 ; i < c a s e S i z e ; i += chunkSize)
9 {

10 System . out . p r i n t (" ") ;
11 CliqueTask c l iqueTask = new CliqueTask (persons , i , chunkSize , . . .) ;
12
13 Future<ArrayList<Ranking>> f u tu r e = executor . submit (c l iqueTask) ;
14
15 f u t u r e s . add (fu tu r e) ;
16 }
17
18 System . out . p r i n t ("]\n ") ;
19
20 ArrayList<Ranking> c l i queTabLi s t = . . . ;

8 Christoph Eickhoff, Tobias George, Stefan Lindel, Albert Zündorf

21
22 f o r (Future<ArrayList<Ranking>> f u tu r e : f u t u r e s)
23 {
24 try
25 {
26 ArrayList<Ranking> r e s u l t s = fu tu r e . get () ;
27
28 f o r (int i = 0 ; i < maxCliqueSize − 1 ; i++)
29 {
30 Ranking ranking = c l iqueTabLi s t . get (i) ;
31 Ranking p a r t i a l R e s u l t = r e s u l t s . get (i) ;
32 ranking . getAvgBest () . addAll (p a r t i a l R e s u l t . getAvgBest ()) ;
33 ranking . getCommonMoviesBest () . addAll (p a r t i a l R e s u l t . getCommonMoviesBest ()) ;
34 ranking . setNoOfCl iques (
35 ranking . getNoOfCliques () + p a r t i a l R e s u l t . getNoOfCliques ()) ;
36 }
37 } catch (Inter ruptedExcept ion | ExecutionException e) { e . pr intStackTrace () ; }
38 }
39 executor . shutdown () ;
40 . . .

Listing 1.2. Parallel execution of clique detection tasks.

With this approach we achieved an execution time of 12,263 seconds for the N=200 000 synthetic case
using only one core and 5,695 seconds using both cores of our reference laptop, cf. row one of table 1. Next,
we enhanced our model implementation by replacing the LinkedHashSet based implementation for persons
in class Movie by an ArrayList based implementation of class PersonSet. This saved about 3.3 seconds on
single core, cf. row two of table table 1.

In the synthetic case movies are generated with ascending rankings. Thus looping through the persons in
order of their creation results in cliques with an ascending order of average ranking. Thus, when we maintain
the list of the 15 best ranked cliques, we constantly replace old entries with higher ranked new entries. To
avoid this, we just visit the persons in reverse order. This saves again 2.4 seconds on our reference laptop.
Well, to some extend this is cheating as this trick will not show an improvement on the real data.

Next we changed the implementation of class MovieSet used in class Person to store a person’s movies
to use ArrayList. At the same time we learned from a conversation with the organizer that the call for
solutions requires to create all cliques explicitly. Until now, we just used parameters of type MovieSet and
PersonSet in our recursive lookForCliques method. To meet the case requirement, we just extended method
addToCliques to create an explicit clique object and to add the commonMovies and the persons to it. In
row 4 of table 1 column manual now shows single thread execution time with explicit clique creation, column
parallel shows two thread execution time with explicit clique creation, and column no create shows two
thread execution time without clique creation. Actually, explicit clique creation needs about 0.5 seconds for
two threads and thus probably about 1 second on a single thread. Still this is outperformed by the change
to the the MovieSet implementation and we now need about 5 seconds to detect all couples and all cliques
in a single thread for the N=200 000 synthetic case.

The SDMLib solution to the MovieDB case for TTC2014 9

solution feature trafo (sec) manual (sec) parallel (sec) no create (sec)

Introduced ArrayList for cliques 12,263 5,695 -
Changed PersonSet to ArrayList<Person> 8,897 4,641 -
Looping through persons in reverse order 6,461 3,043 -
Changed MovieSet to Array List, creating Cliques explicit 4,740 2,379 1,919
Added trafo, improved it by factor 5 213,250 5,723 2,795 2,330
Caching trafos 74,596 4,697 2,247 1,858

Table 1. Evaluation results

At this point in time, we added the model transformation based solution to the clique detection mechanism
as discussed in section 2. Initially, the trafo solution already took some 200 seconds for the N=20 000 case.
We identified that the SDMLib model transformation mechanism did a lot of copying of candidate sets during
search. By removing many of these copies and by using ArrayList where possible we achieved a speed-up of
about factor 6 resulting in the times reported in row 5 of table 1. Thus, the improved model transformation
used 213 seconds for the N=200 000 synthetic case. Unhappy with this execution time, we identified that the
lookForCliques transformation is called recursively some million times and that we construct the object
structure that represents the model transformation each time anew. Thus, we added a cache for the object
structure that represents the model transformation and just reinitialized it to start the pattern matching
from a new clique each time. This reduced the execution time to some 75 seconds, cf. last row of table 1.

Overall, the transformation based solution is still 15 times slower than the set based solution. Some frac-
tion of this overhead is surely caused by the interpreter that runs through the object structure representing a
model transformation and executes it. However, at last years transformation tool contest this interpretation
overhead seemed not that much a problem. Actually, we have already spotted some other inefficient heap
operations within the interpreter. We work on more improvements on that.

4 Conclusions

Our first approach to attack the MovieDB case was a manually written Java method exploiting the model
implementation generated by SDMLib and especially exploiting the generated set-based model layer as shown
in listing 1.1. Coming up with this solution was quite straight forward and we think it is reasonably concise
and it seems to be reasonably efficient.

For comparison, we also developed a model transformation based approach. While the graphical rep-
resentation of the model transformations in figure 2 and figure 3 is reasonably understandable (at least if
you have developed them yourself :), the Java code that creates the object structure that represents the
model transformations is about double the size of the set-based solution. In addition, the Java code is not
as comprehensible as the set-based code. And finally, the model transformation based solution is slower by
a factor of 15.

During the development of SDMLib and during teaching it, we recognized that in many cases the set-
based model layer suffices to program a certain model operation. Actually, it was pretty tricky to come up
with a real world example where the set-based layer did not suffice and a model transformation was more
handy. While such cases exist and thus model transformations are useful, the MovieDB case does is more
easily addressed by a set-based solution.

Note, the set-based model layer generated by SDMLib compares to simple OCL expressions [1]. Thus, a
comparable solution might have been created using EMF and OCL. Next, before this benchmark the model

10 Christoph Eickhoff, Tobias George, Stefan Lindel, Albert Zündorf

layer generated by SDMLib relied on LinkedHashSets for the implementation of to-many associations.
We thought that LinkedHashSet is the most efficient data structure for to-many associations as each add
operation requires to check whether the element is already contained. This avoids that an element is contained
in the set of neighbors multiple times. This especially was a distinction from EMF based models that use
ELists to implement to-many associations which finally compares to an ArrayList. In this benchmark we
followed the advice of EMF and used an ArrayList based solution, too. Actually, this is more efficient as
long as the sets are reasonable small (some hundred to some 1000 elements). When we used an ArrayList

based PersonSet (guaranteeing the uniqueness of contained elements) for the root clique of the MovieDB
case that contains all movies and all persons, the ArrayList performance caved in. Actually, the check for
containment is not necessary while creating the synthetic cases or reading the real case files. Thus, the choice
of the right data structure heavily depends on the situation and it may even change during execution time
(initially a lot of add operations, then only reads). For SDMLib we will soon provide an option to enable
the user to choose the data structure that fits the user’s purposes most.

Please find some clique ranking reports in the appendix A.

References

1. O. M. G. (OMG). Object constraint language (ocl). version 2.3.1, 2012.
2. Eclipse Modeling Framework. http://sdmlib.org/, 2014.
3. Story Driven Modeling Library. https://www.eclipse.org/modeling/emf/, 2014.
4. Movie Database Case for the TTC 2014. https://github.com/ckrause/ttc2014-imdb, 2014.

