AToMPM Solution for the IMDB Case Study

Hiseyin Ergin and Eugene Syriani

University of Alabama, Tuscaloosa AL, U.S.A.
{hergi n@rinson, esyri ani @s}. ua. edu

Abstract. In this paper, we present an AToOMPM solution for the IMDB case
study of transformation tool contest 2014.

1 Introduction

AToMPM [1] allows one to model and execute model transforamet It provides a
graphical user interface to define the metamodels of thetiapd output languages,
define the transformation rules and their scheduling, aeduwg® continuously or step-
by-step transformations on given models.

The model transformation language of ATOMPM is MoTIf! [2]. MoTif , rules
consist of a pre- and a post-condition. The pre-conditiottepa determines the ap-
plicability of the rule and is usually defined with a left-lthside (LHS) and optional
negative application conditions (NAC). The post-conditietermines the result of the
rule and is defined by a right-hand side (RHS) which must befsat after the rule
is applied. Furthermore, any element in a rule in the LHS oSRhRhy be assigned to
a pivot. It acts as a variable that can be referred to by otllesr To use a pivot, an
element from the LHS or NAC can be bound to that pivot. The iulEig.[ is a Mo-
Tif rule with a NAC, LHS, and RHS (from left to right). For themaining of the paper,
we have used a more concise notation to save space and anhetatiles as needed.

Movie i Move
e i T
2000 [ ool
|

R

‘ P da P

8§ b
(“couple3)
-

Fig. 1. MoTif rule as it appears in ATOMPM .

The scheduling, or the control flow, describes the order iickvkhe rules are ex-
ecuted. Each rule is represented by a rule block having thogs. Conceptually, a
rule receives models via the input port at the top. If the islsuccessfully applied,
the resulting model is output from the success port at theoboteft. Otherwise, the
model does not satisfy the pre-condition and the originall@h@ output from the fail



port at the bottom right. Fi§l] 2 depicts an example of corftosl structure to schedule
MoTif rules.

Some rule blocks are annotated in the scheduling, denotspgeal behavior. The
meaning of these rules are:

— ARule: is a regular “Atomic Rule” that is executed once on a singiah. It has
no annotation.€g., resetlterator in Fig.[2)

— FRule: stands for “For all Rule”. All matches are found first andrthiee rule is
applied on all the matches. It is annotated with a letter (€4., computeAverage
in Fig.[4)

— SRule: stands for “Star Rule”. It is a rule that is recursively apg@lon each match
as long as matches are found. Therefore, the result of tlieissrthe accumulation of
each application. It is annotated with an asterisk ‘€g(, createPositive in Fig.[2)

— QRule: stands for “Query Rule”. It is aARule with no side effect since it does not
have a RHS, but may still assign pivots. It is annotated witjuastion mark ‘?’.
(e.g., findCouple in Fig.[4)

— CQRule: stands for “Complex Query Rule”. It is a nest®@&ule where a second
query filters the result of the first one. It is annotated with tjuestion marks “??’.
(e.g., getOneCouple andnotHighestRatingCouple in Fig.[3)

This paper provides a solution to the IMDB model transfoioratase study, whose
full description can be found &fl[3]. In Sectibh 2, we provilde details about the solu-
tion. In Sectiol ¥4, we summarize the results and conclude.

2 Solution

We have solved every task and extension of the case studydWMRM . We used the
same metamodel as given in the briefing document [3] withhsligodifications. An
integerflag variable is added t@roup class to mark already processed groups while
computing the top couples and top cliques. Also for the sdksinoplicity, we have
added anovieNumber attribute toGroup class to hold the number of movies that group
has. ATOMPM does not have an iterator as a scheduling steudtor this reason, we
have added an expliciteration class both to iterate on a rule and pass the value of the
iterator to the rules to be used within. In the rulgsation class has a concrete syntax
of a black rectangle and a text starting with “I” and having turrent value and the
limit of the iteration.

Each solution shows the rules on the left of the figure and ¢heduling of these
rules on the right.

2.1 Task 1: Generating Test Data

The first task is to generate the test data for the case. The amd the scheduling of
these rules are depicted in Hig. 2. The rules help to creagesofMovies, Actors and
Actresses with the necessary relationships among each other. Tée mostly look
like the original rules in the document, only with the adulitiof thelteration class. The
iterator makes the transformation riv times. This parameter can be set within the
input model. We have an extra rule to reset the iterator befvery use.



createPositive

<@

"[Movie| [Movie| 3[Movie] *[Movie]*[Movie
ed

resetlterator

0 0 “ - = 1 A
1[0>n] JANI110>n] BTV 76l st 9L 104 v
current[0]<limit[0] rating[1]=10%n, rating[2]=10*n+1, rating[3]=10*n+2, rating[4]=10*n+3, rating[5]=10*n+4 *
name[6]=10%*n, name[7]=10*n-+1, name[8]=10*n+2, name[9]=10*n+3, name[10]=10*n+4 . agn
artentiOl++ :createPositive
createNegative \v/(
1[Movie] 2[Movie] 3[Movie] “[Movie] *[Movie
7 ) 7 ‘resetlterator
0

(

0 a 5 09
1[0>n] WARTI0>n] YY) 76 std 9\‘;} 10\2

current[0]<limit[0] rating[1]=10*n+5, rating[2]=10*n+6, rating[3]=10*n+7, rating[4]=10*n+8, rating[5]=10*n+9
name[6]=10*n+5, name[7]=10*n+6, name[8]=10*n+7, name[9]=10*n+8, name[10]=10*n+9
current[0]++
resetlterator

:createNegative

(O
&

0
1[0>

current[0]=0

1[0>

Fig. 2. Task 1 rules and scheduling.

2.2 Task 2: Finding Couples

i reateCouple
4 T
s S | %

[ 1
4 5 H 2| 3| 1 2 3|
pl p : :findStarsAndCreateCouple|
._.6_ .. o g \ x\@
: AEE sa 4 5 *
4 564 - il " plp :referenceToCoupleMovies
2t 6@ud
1
@ | B G 4
referenceToCoupleMovies
Ve T
o] | OogE] |\ Mol
1
i
1
patle 3gu [ 2 3
PP p2
@D | @ + D

Fig. 3. Task 2 rules and scheduling.

This task aims to find two people who played in at least thre@@sdogether, create
a Couple for them and reference to each movie they played in togettner.rules and
the scheduling of these rules are depicted in[Big. 3.fildstarsAndCreateCouple rule
checks for two people that played in the same three moviesrdih will find the match
if they have more than three movies too. Th&paple class is created with a relation to
each person. The NACs prevent to consider people alreadyipies. Since they can be
either thepl or thep2 of a couple, there are two NACs for each case. Pigttandp2



are assigned to these people, so we can refer to these twampénshe following rule.
The referenceToCoupleMovies rule creates @ommonMovies relation from the newly
created couple to each movie they played together, if netdiy referenced.

2.3 Task 3: Computing Average Rankings

findCouple computeAverage i

2 Movi 2 i ?
1 ovie Movie ] ?
:findCouple
<
avgRating[1]==0 1 @ 1 @ \ >\@
T F
ingl1]= (avgRating[1]*movieNumber[1])-+rating[2]) :compl‘IteAverage
SRR (movieNumber[1]+1)
movieNumber{1]++ , %

Fig. 4. Task 3 rules and scheduling.

This task is to compute the average rankings of each couplsibg thecommon-

Movies relation of the couples. The rules and the scheduling ofthales are depicted

in Fig.[4. ThefindCouple rule finds a couple witlwgRating zero, which means its av-
erage rating is not computed yet. It sets a pivot for this totmp be used in the next
rule. Then, theomputeAverage rule traverses all movies of this couple and computes
moving average with increasing the movie number of the eobplone each time. The
computation of the average is done in an intuitive way. Fite& current average rating
is multiplied by the current number of movies. Then, then@f the current movie is
added to this multiplication. Finally, the last number igided by one more than the
current movie number of the couple.

2.4 Extension Task 1: Compute Top-15 Couples

This task computes the top 15 couples and prints relevamtiretion. The rules and the
scheduling of these rules are depicted in Elg. 5. We use¢hatdr to compute the top
N couples. This gives us the flexibility of setting the numbkcauples we want, di-
rectly within the model. Theesetlterator rule resets the iterator before use. Tiereator
rule counts how many couples we want and it stops when we tbatmumber. Also
we use theurrent attribute of this iterator to print the sequence number avpiinting
information of a couple. In the scheduling, thetOneCouple and notHighestRating-
Couple rules are put together inside a single CQRule (describe@dti&{1). This rule
block finds a couple and eliminates it if it does not have thghést rating. It ends up
with the highest rating couple at the end and sets a pivot Tthi¢flag attribute is used
to mark the processed highest rating couple after printieginformation. Then, the
printCouplelnformation prints the necessary information to developer consolecases
the current attribute of the iterator by one and sets the fllgeoprocessed couple 10



iterator getOneCouple z

0
1[0>n] 1 G
¢ ‘resetlterator
current{0]<limit[0] flagl1]==0
notHighestRatingCouple _;V/:
1Coupd siterator
2
avgRating[2]>avgRating(1], flag[2]==0 )
printCouplelnformation :getOneCouple
:notHighestRatingCouple
2 3 2 3
G + G ~
-
0 ¢ 0 :printCouplelnformation
1[0>n] 1[0>n] il

current[0]++, flag[4]=1, print(4)

Fig. 5. Extension task 1 rules and scheduling.

The rules in the figure shows the solution for the top couptes@ing to the av-
erage rating of their common movies. Solving the problentliertop couples accord-
ing to the number of common movies is pretty easy. We add anatlhe, notHighest-
MovieNumber, which looks exactly like th@otHighestRatingCouple rule, but it has a
condition of commonM ovies[2] > commonM ovies[1]. The rest of the transforma-
tion is the same.

2.5 Extension Task 2: Finding Cliques

findClique0f3
' T
! o] iovie] *[ovie] \ '[Moyie] “Movie] *[ovie] :
i
- - - E LY e Y - - e Y
1 1 1 . 1 1 1 1 1 1 * ~®
4ﬂ4 sri‘ o i ool sl odl 4ﬂ4 sli4 6, \
‘L ' pT pT pT JL :referenceToCliqueMovies
@ @@
T
"[Movie] i "[Movie] '[Movie]
1
o 1
P4 5 6 4 5 6
i
7 i 7 7
@ i @

Fig. 6. Extension task 2 rules and scheduling.

This task aims at finding the cliques between people. A cliguegeneralization
of a couple with more than two people. The rules and the sdimedof these rules are



depicted in FigB. They are exactly the same as in task 2, buthanged theouple to
aCliqgue and added one more person.

The figure has the rules to find the cliques of three people.d/eat show the rest
of the rules for cliques of four and five, since they are eyesdime copies with one and
two more people added respectively.

2.6 Extension Task 3: Compute Average Rankings for Cliques

This task is to compute average ratings of each clique atéathe previous extension
task. The rules and the scheduling of these rules are ddpicteg.[1. They are mostly
the same as in task 3, which computes the average ratingsadbr @uple. We just
replaced the couple with a clique.

findClique computeAverage z

2 2 i ?
! :findClique
’ C :
avgRating[11==0 1(dique) 1 {igu \ >K(9
T

:computeAverage

ingl1]= (avgRating[1]*movieNumber(1]+rating[2])

S (movieNumber[1]+1)
movieNumber[1]++ , %

Fig. 7. Extension task 3 rules and scheduling.

2.7 Extension Task 4: Compute Top-15 Cliques

This tasks computes the top 15 cliques and prints informadimout them. The rules
and the scheduling of these rules are depicted infig. 8. &heynostly like extension
task 1, which computes the top couples. We have changedectauplique to solve this
task.

The rules solve this task by using the average rating of elighec Adapting the
problem to use the number of common movies is easy and judsra®ther rule as in
extension task 1.

3 Performance

AToMPM depends on the network communication and this predadbottleneck while
computing the performance results. In this section, we laveputed the performance
results of the first task with the previous and native vergbWToMPM , which is
AToM?3 [4]. AToM? is implemented in python and executes faster for that reaslen
give the performance results to be used as a reference. Silésreftask 1: generating
test data with V = 10 for AToM? and AToMPM and forV = 1000 for AToM? can
be seen below.



iterator getOneClique

0
1[0>n] 1
C

current[0]<limit[0]

flag[1]==0
notHighestRatingClique

@ @

avgRating[2]>avgRating(1], flag[2]==0
printCliquelnformation

4 o2\ 2

1@ + @D

¢ 0
1[0>n]

current[0]++, flag[4]=1, print(4)

0
1[0>n]

!

‘resetlterator

i

?

titerator

xx—@

:getOneClique
:notHighestRatingClique

~

:printCliquelnformation

7

Fig. 8. Extension task 4 rules and scheduling.

— AToM3 for N = 10 -> 0.25982144 seconds
— AToM?3 for N = 1000 -> 1171.11912448 seconds
— AToMPM for N = 10 -> 1.40664465 seconds

4 Conclusion

In this paper, we described the our solution of the IMDB cdsdysusing ATOMPM .
AToMPM heavily depends on graphical user interface and #ralling of really large
models is not possible in the current status. However, wenvar&ing on a headless
environment and a new version of ATOMPM to overcome thesgeissHence this so-
lution focuses on the expressiveness and usability poweodteling and transforming
in ATOMPM , rather than its performance. In the SHARE machime put an appendix
version of this paper to describe the steps to reproducetteases.

References

1. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Miarld H. Ergin, “Atompm:
A web-based modeling environment,” MODELS 13: Invited Talks, Demos, Posters, and

ACM SRC. CEUR-WS.org, 2013.

2. E. Syriani and H. Vangheluwe, “A Modular Timed Model Transfation Language,Jour-

nal on Software and Systems Modeling, vol. 11, pp. 1-28, June 2011.

3. T. Horn, C. Krause, and M. Tichy, “The TTC 2014 Movie DatabaseseC’ [Online].
Available:| https://github.com/ckrause/ttc2014-imdb/raw/master/caseimtest. pdf

4. J. de Lara and H. Vangheluwe, ‘Atg’r.nA tool for multi-formalism and meta-modelling,” in

FASE, 2002, pp. 174-188.

??


https://github.com/ckrause/ttc2014-imdb/raw/master/case_description.pdf

	AToMPM Solution for the IMDB Case Study

