
AToMPM Solution for the IMDB Case Study

Hüseyin Ergin and Eugene Syriani

University of Alabama, Tuscaloosa AL, U.S.A.
{hergin@crimson,esyriani@cs}.ua.edu

Abstract. In this paper, we present an AToMPM solution for the IMDB case
study of transformation tool contest 2014.

1 Introduction

AToMPM [1] allows one to model and execute model transformations. It provides a
graphical user interface to define the metamodels of the input and output languages,
define the transformation rules and their scheduling, and execute continuously or step-
by-step transformations on given models.

The model transformation language of AToMPM is MoTif [2]. InMoTif , rules
consist of a pre- and a post-condition. The pre-condition pattern determines the ap-
plicability of the rule and is usually defined with a left-hand side (LHS) and optional
negative application conditions (NAC). The post-condition determines the result of the
rule and is defined by a right-hand side (RHS) which must be satisfied after the rule
is applied. Furthermore, any element in a rule in the LHS or RHS may be assigned to
a pivot. It acts as a variable that can be referred to by other rules. To use a pivot, an
element from the LHS or NAC can be bound to that pivot. The rulein Fig. 1 is a Mo-
Tif rule with a NAC, LHS, and RHS (from left to right). For the remaining of the paper,
we have used a more concise notation to save space and annotate the rules as needed.

Fig. 1. MoTif rule as it appears in AToMPM .

The scheduling, or the control flow, describes the order in which the rules are ex-
ecuted. Each rule is represented by a rule block having threeports. Conceptually, a
rule receives models via the input port at the top. If the ruleis successfully applied,
the resulting model is output from the success port at the bottom left. Otherwise, the
model does not satisfy the pre-condition and the original model is output from the fail

port at the bottom right. Fig. 2 depicts an example of controlflow structure to schedule
MoTif rules.

Some rule blocks are annotated in the scheduling, denoting aspecial behavior. The
meaning of these rules are:

– ARule: is a regular “Atomic Rule” that is executed once on a single match. It has
no annotation. (e.g., resetIterator in Fig. 2)

– FRule: stands for “For all Rule”. All matches are found first and then the rule is
applied on all the matches. It is annotated with a letter ‘F’.(e.g., computeAverage
in Fig. 4)

– SRule: stands for “Star Rule”. It is a rule that is recursively applied on each match
as long as matches are found. Therefore, the result of this rule is the accumulation of
each application. It is annotated with an asterisk ‘*’. (e.g., createPositive in Fig. 2)

– QRule: stands for “Query Rule”. It is anARule with no side effect since it does not
have a RHS, but may still assign pivots. It is annotated with aquestion mark ‘?’.
(e.g., findCouple in Fig. 4)

– CQRule: stands for “Complex Query Rule”. It is a nestedQRule where a second
query filters the result of the first one. It is annotated with two question marks ‘??’.
(e.g., getOneCouple andnotHighestRatingCouple in Fig. 5)

This paper provides a solution to the IMDB model transformation case study, whose
full description can be found at [3]. In Section 2, we providethe details about the solu-
tion. In Section 4, we summarize the results and conclude.

2 Solution

We have solved every task and extension of the case study in AToMPM . We used the
same metamodel as given in the briefing document [3] with slight modifications. An
integerflag variable is added toGroup class to mark already processed groups while
computing the top couples and top cliques. Also for the sake of simplicity, we have
added amovieNumber attribute toGroup class to hold the number of movies that group
has. AToMPM does not have an iterator as a scheduling structure. For this reason, we
have added an explicitIteration class both to iterate on a rule and pass the value of the
iterator to the rules to be used within. In the rules,Iteration class has a concrete syntax
of a black rectangle and a text starting with “I” and having the current value and the
limit of the iteration.

Each solution shows the rules on the left of the figure and the scheduling of these
rules on the right.

2.1 Task 1: Generating Test Data

The first task is to generate the test data for the case. The rules and the scheduling of
these rules are depicted in Fig. 2. The rules help to create a series ofMovies,Actors and
Actresses with the necessary relationships among each other. The rules mostly look
like the original rules in the document, only with the addition of theIteration class. The
iterator makes the transformation runN times. This parameter can be set within the
input model. We have an extra rule to reset the iterator before every use.

Movie1

createNegative

Movie Movie Movie Movie2 3 4

6 7 8 9 10

5

I[0>n] I[0>n]
0 0

rating[1]=10*n+5, rating[2]=10*n+6, rating[3]=10*n+7, rating[4]=10*n+8, rating[5]=10*n+9

name[6]=10*n+5, name[7]=10*n+6, name[8]=10*n+7, name[9]=10*n+8, name[10]=10*n+9

current[0]++

Movie1

createPositive

Movie Movie Movie Movie2 3 4 5

I[0>n] I[0>n]
0 0

rating[1]=10*n, rating[2]=10*n+1, rating[3]=10*n+2, rating[4]=10*n+3, rating[5]=10*n+4

name[6]=10*n, name[7]=10*n+1, name[8]=10*n+2, name[9]=10*n+3, name[10]=10*n+4

current[0]++

6 7 8 9 10

resetIterator

I[0>n] I[0>n]
0 0

current[0]=0

:resetIterator

*
:createPositive

:resetIterator

*
:createNegative

current[0]<limit[0]

current[0]<limit[0]

Fig. 2.Task 1 rules and scheduling.

2.2 Task 2: Finding Couples

Movie1

findStarsAndCreateCouple

Movie Movie2 3

4

:findStarsAndCreateCouple

*
:referenceToCoupleMovies

5

Movie1 Movie Movie2 3

4 5

couple6

4 5

couple6

4 5

couple6

p1 p2

p1p2

p1 p2p1 p2

referenceToCoupleMovies

Movie1

2 3

couple4

Movie1

2 3

couple4

p1 p2

Movie1

couple4

Fig. 3.Task 2 rules and scheduling.

This task aims to find two people who played in at least three movies together, create
a Couple for them and reference to each movie they played in together.The rules and
the scheduling of these rules are depicted in Fig. 3. ThefindStarsAndCreateCouple rule
checks for two people that played in the same three movies. The rule will find the match
if they have more than three movies too. Then aCouple class is created with a relation to
each person. The NACs prevent to consider people already in couples. Since they can be
either thep1 or thep2 of a couple, there are two NACs for each case. Pivotsp1 andp2

are assigned to these people, so we can refer to these two persons in the following rule.
The referenceToCoupleMovies rule creates acommonMovies relation from the newly
created couple to each movie they played together, if not already referenced.

2.3 Task 3: Computing Average Rankings

computeAverage

Movie2

:findCouple

F
:computeAverage

c

findCouple

couple1

c

couple1

Movie2

couple1

(avgRating[1]*movieNumber[1]+rating[2])

 (movieNumber[1]+1)
avgRating[1]=

movieNumber[1]++

?

avgRating[1]==0

Fig. 4.Task 3 rules and scheduling.

This task is to compute the average rankings of each couple byusing thecommon-
Movies relation of the couples. The rules and the scheduling of these rules are depicted
in Fig. 4. ThefindCouple rule finds a couple withavgRating zero, which means its av-
erage rating is not computed yet. It sets a pivot for this couple to be used in the next
rule. Then, thecomputeAverage rule traverses all movies of this couple and computes
moving average with increasing the movie number of the couple by one each time. The
computation of the average is done in an intuitive way. First, the current average rating
is multiplied by the current number of movies. Then, the rating of the current movie is
added to this multiplication. Finally, the last number is divided by one more than the
current movie number of the couple.

2.4 Extension Task 1: Compute Top-15 Couples

This task computes the top 15 couples and prints relevant information. The rules and the
scheduling of these rules are depicted in Fig. 5. We use the iterator to compute the top
N couples. This gives us the flexibility of setting the number of couples we want, di-
rectly within the model. TheresetIterator rule resets the iterator before use. Theiterator
rule counts how many couples we want and it stops when we reachthat number. Also
we use thecurrent attribute of this iterator to print the sequence number while printing
information of a couple. In the scheduling, thegetOneCouple andnotHighestRating-
Couple rules are put together inside a single CQRule (described in Section 1). This rule
block finds a couple and eliminates it if it does not have the highest rating. It ends up
with the highest rating couple at the end and sets a pivot to it. Theflag attribute is used
to mark the processed highest rating couple after printing the information. Then, the
printCoupleInformation prints the necessary information to developer console, increases
the current attribute of the iterator by one and sets the flag of the processed couple to1.

printCoupleInformation

2 3

couple4

2 3

couple4

c

getOneCouple

couple1

flag[1]==0

c

notHighestRatingCouple

couple1

avgRating[2]>avgRating[1], flag[2]==0

couple2

c

current[0]++, flag[4]=1, print(4)

:resetIterator

iterator

current[0]<limit[0]

??

?

Fig. 5.Extension task 1 rules and scheduling.

The rules in the figure shows the solution for the top couples according to the av-
erage rating of their common movies. Solving the problem forthe top couples accord-
ing to the number of common movies is pretty easy. We add another rule,notHighest-
MovieNumber, which looks exactly like thenotHighestRatingCouple rule, but it has a
condition ofcommonMovies[2] > commonMovies[1]. The rest of the transforma-
tion is the same.

2.5 Extension Task 2: Finding Cliques

Movie1

findCliqueOf3

Movie Movie2 3

4

:findCliqueOf3

*
:referenceToCliqueMovies

5

7

p1 p2

referenceToCliqueMovies

6

p3

Movie1 Movie Movie2 3

4 5 6

clique7

4 5 6

clique

7

Movie1

4 5 6

clique 7

Movie1

4 5 6

clique

p1 p2 p3

7

Movie1

clique

Fig. 6.Extension task 2 rules and scheduling.

This task aims at finding the cliques between people. A cliqueis a generalization
of a couple with more than two people. The rules and the scheduling of these rules are

depicted in Fig. 6. They are exactly the same as in task 2, but we changed theCouple to
a Clique and added one more person.

The figure has the rules to find the cliques of three people. We did not show the rest
of the rules for cliques of four and five, since they are exactly same copies with one and
two more people added respectively.

2.6 Extension Task 3: Compute Average Rankings for Cliques

This task is to compute average ratings of each clique created in the previous extension
task. The rules and the scheduling of these rules are depicted in Fig. 7. They are mostly
the same as in task 3, which computes the average ratings for each couple. We just
replaced the couple with a clique.

computeAverage

Movie2

:findClique

F
:computeAverage

c

findClique

1

c

1

Movie2

1

(avgRating[1]*movieNumber[1]+rating[2])

 (movieNumber[1]+1)
avgRating[1]=

movieNumber[1]++

?clique

clique cliqueavgRating[1]==0

Fig. 7.Extension task 3 rules and scheduling.

2.7 Extension Task 4: Compute Top-15 Cliques

This tasks computes the top 15 cliques and prints information about them. The rules
and the scheduling of these rules are depicted in Fig. 8. Theyare mostly like extension
task 1, which computes the top couples. We have changed couple to clique to solve this
task.

The rules solve this task by using the average rating of each clique. Adapting the
problem to use the number of common movies is easy and just needs another rule as in
extension task 1.

3 Performance

AToMPM depends on the network communication and this produces a bottleneck while
computing the performance results. In this section, we havecomputed the performance
results of the first task with the previous and native versionof AToMPM , which is
AToM3 [4]. AToM3 is implemented in python and executes faster for that reason. We
give the performance results to be used as a reference. The results oftask 1: generating
test data with N = 10 for AToM3 and AToMPM and forN = 1000 for AToM3 can
be seen below.

printCliqueInformation

2 3

4

2 3

4

c

getOneClique

1

flag[1]==0

c

notHighestRatingClique

1
2

c

current[0]++, flag[4]=1, print(4)

:resetIterator

iterator

current[0]<limit[0]

??

?

clique

clique
clique

clique clique

avgRating[2]>avgRating[1], flag[2]==0

Fig. 8.Extension task 4 rules and scheduling.

– AToM3 for N = 10 -> 0.25982144 seconds
– AToM3 for N = 1000 -> 1171.11912448 seconds
– AToMPM for N = 10 -> 1.40664465 seconds

4 Conclusion

In this paper, we described the our solution of the IMDB case study using AToMPM .
AToMPM heavily depends on graphical user interface and the handling of really large
models is not possible in the current status. However, we areworking on a headless
environment and a new version of AToMPM to overcome these issues. Hence this so-
lution focuses on the expressiveness and usability power ofmodeling and transforming
in AToMPM , rather than its performance. In the SHARE machine, we put an appendix
version of this paper to describe the steps to reproduce the test cases.

References

1. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin, “Atompm:
A web-based modeling environment,” inMODELS’13: Invited Talks, Demos, Posters, and
ACM SRC. CEUR-WS.org, 2013.

2. E. Syriani and H. Vangheluwe, “A Modular Timed Model Transformation Language,”Jour-
nal on Software and Systems Modeling, vol. 11, pp. 1–28, June 2011.

3. T. Horn, C. Krause, and M. Tichy, “The TTC 2014 Movie Database Case.” [Online].
Available: https://github.com/ckrause/ttc2014-imdb/raw/master/case_description.pdf

4. J. de Lara and H. Vangheluwe, “Atom3: A tool for multi-formalism and meta-modelling,” in
FASE, 2002, pp. 174–188.

https://github.com/ckrause/ttc2014-imdb/raw/master/case_description.pdf

	AToMPM Solution for the IMDB Case Study

