Solving the TTC 2014 Movie Database Case with GrGen.NET

Edgar Jakumeit

The task of the Movie Database Case [2] is to identify all couples of actors who performed together
in at least three movies. The challenge of the task is to do this fastly on a large database. We employ
the general purpose graph rewrite system GRGEN.NET in developing and optimizing a solution.

1 Whatis GrGen.NET?

GRGEN.NET (www.grgen.net) is a programming language and development tool for graph structured
data with pattern matching and rewriting at its core, which furthermore supports imperative and object-
oriented programming, and features some traits of database query-result processing.

Founded on an rich data modeling language with multiple inheritance on node and edge types, it
offers pattern-based rewrite rules of very high expressiveness, with subpatterns and nested alternative,
iterated, negative, and independent patterns, as well as preset input parameters and output def variables
yielded to. The rules are ochestrated with a concise control language, which offers constructs that are
simplifying backtracking searches and state space enumeration.

Development is supported by graphical and stepwise debugging, as well as search plan explanation
and profiling instrumentation for graph search steps — the former helps in first getting the programs
correct, the latter in getting them fast thereafter. The tool was built for performance and scalability: its
model data structures are designed for fast processing of typed graphs at modest memory consumption,
while its optimizing compiler adapts the search process to the characteristics of the host graph at hand
and removes overhead where it is not needed.

GRGEN.NET lifts the abstraction level of graph-representation based tasks to declarative and elegant
pattern-based rules, that allow to program with structural recursion and structure directed transformation
[4]. Employing GRGEN.NET one is able to achieve the highest combined speed of development and
execution available for graph-based tasks.

2 Data transformation

The input supplied for the case is in XMI format, following the EMF modelling. This means esp. that in
between Movie and Person nodes we find movies and persons references resp. edges, always a pair
of them, one in the opposite direction of the other. These twins offer no addition information, they just
allow to find the opposite node either way. This would be wasteful for GRGEN whose edges are always
navigable in both directions.

So as a preparatory step we apply a model-to-text transformation, mapping the XMI models supplied
to GRS files, the native serialization format of GRGEN.NET. The central rule create_personToMovie
in GrgenifyMovieDatabase.grg emits a new edge command for a personToMovie edge upon visit-
ing a pair of movies and persons. The transformation is applied on all input files with a shell script
GrgenifyMovieDatabase.sh containing a call to the GRSHELL with a here-document specifying the
workflow. In the following steps we then import the GRS files with the single edges.

To appear in EPTCS. (© Edgar Jakumeit

www.grgen.net

2 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

A further benefit from this model mapping are the cleaner names of the manually specified model,
compared to the model that is auto-generated when the ecore/XMI is imported. The latter mechanism
applies name mangling — which is needed to prevent name clashes of global edge types stemming from
multiple equally named references that are contained in the type of their node, and for preventing colli-
sions with GRGEN.NET keywords.

Removing the edges reduces memory consumption and improves cache utilization, the gains are
considerable when working with millions of objects, esp. since GRGEN always implements directed,
typed, multi-graphs with/for each of its entities. The memory consumption of a GRGEN.NET edge
without attributes is 52 bytes using a 32bit CLR (9 pointers a 4 bytes, a 4 bytes flags field/bitvector, a
4 bytes unique id field, plus 8 bytes .NET object overhead), it is 96 bytes for a 64bit CLR (9 pointers
a 8 bytes, a 4 bytes flags field, a 4 bytes unique id field, plus 16 bytes .NET object overhead). A node
without attributes uses up 36 bytes, or 64 bytes on 64bit. Attributes only add the .NET overhead of their
implementation type. The pointers stem from the system of ringlists the entities are contained in, which
allows for fast pattern matching and rewriting (index-free adjacency).

3 Getting it right

As always, the first step is to get a correct solution specified in the cleanest way possible, and only later
on to optimize it for performance as needed.

Main rule

The workhorse rule for finding all pairs of persons which played together in at least three movies is
findCouples.

rule findCouples

{
pnl:Person; pn2:Person;
independent {

pnl -:personToMovie-> ml:Movie <-:personToMovie- pn2;
pnl -:personToMovie-> m2:Movie <-:personToMovie- pn2;
pnl -:personToMovie-> m3:Movie <-:personToMovie- pn2;
}
modify {
c:Couple;

c -:pl-> pnil;
c -:p2-> pn2;

ezec(addCommonMoviesAndComputeAverageRanking (c, pnl, pn2));

}
} \ auto

Figure 1: findCouples rule

It specifies a pattern of two nodes pn1l and pn2 of type Person, and an independent pattern which
asks for 3 nodes m1, m2, m3 of type Movie, each being the target of an edge of type personToMovie
starting at pn1, and each being also the target of an edge starting at pn2. (Types are given after a colon,

Edgar Jakumeit 3

the optional name of the entity may be given before the colon, for edges they are inscribed into the edge
representation ——>).

An independent pattern means for one that its content only needs to be searched and is not available
for rewriting, and for the other that for each pnl and pn2 in the graph, it is sufficient to find a single
instance of the independent, even if the rule is requested to be executed on all available matches —
without the independent we would get all the permutations of m1, m2, and m3 as different matches.

The rewriting is specified as nested pattern in modify mode, which means that newly declared enti-
ties will be created, and all entities from the matched pattern kept unless they are explicitely requested
to be deleted. Here we create a new node c of type Couple, link it with edges of the types p1 and p2
to the nodes pn1 and pn2, and then execute the helper rule addCommonMoviesAndComputeAverageR-
anking on c, pni, and pn2. The helper rule is used to create the commonMovies edges to all the movies
both played in.

The auto keyword after the rule requests GRGEN.NET to generate a symmetry filter for matches
from automorphic patterns. The pattern is automorphic because it may be matched with pn2 for pn1 and
pnl for pn2.

To get all pairs of persons which played together in at least three movies we execute the rule with all-
bracketing from a graph rewrite sequence in the GRSHELL script MovieDatabase.grs, filtering away
automorphic matches, with the syntax: exec [findCouples\auto].

The helper rule addCommonMoviesAndComputeAverageRanking eats all common movies with an
iterated pattern which is matched as often as possible; in the rewrite part it links the Couple node
to each such movie with a commonMovies edge. In the eval part used for attribute evaluation, the
avgRating is computed as the sum of the ratings of the movies munched, divided by the count of
the iterateds matched. The def wvar is used to define a variable whose content is computed after
matching from the matched entites, the yield is used to assign to such variables, from nested patterns
up to their containing patterns (normally variables are passed the other way round, from nesting to nested
patterns, following the flow of matching).

The language constructs are explained in more detail in the extensive GRGEN.NET user manual [[1]].

Test data and Top Couples

The synthetic test set of task 1 is generated with the rules in MovieDatabaseCreation.grg. It is cre-
ated in the very same way as in the Henshin specification given in the case description, just in textual
GRGEN syntax, with a sequence definition createExample implemented with an integer range itera-
tion for{i:int in [0:n-1]; createPositive(n) ;> createNegative(n)} and the rules cre-
atePositive and createNegative, applied in succession by the then-right operator.

You can check they are correctly generated with the graph viewer supplied with GRGEN.NET. In
you see the smallest generated synthetic model, with actors colored yellow and movies colored
blue.

The extension task 1 requires to compute the top couples according to the average rating of their
common movies, and according to the number of common movies. It is solved with the rule cou-
plesWithRating.

The rule matches a Couple and its linked Persons. Two def variables avgRating and num-
Movies for the values of interest are created and filled with the average rating stored in the couple
nodes, and the number of movies as computed from the size of the set of commonMovies edges out-
going from the couple node. We employ a yield block to assign the variables (bottom-up) after the
(top-down) pattern matching completed. In the rewrite part specified in modify mode we just emit the

4 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

nE aaa i Al m»

$A:personTo/MBRErED

$22:Actress
al7

$24:Actress
al8

$26:Actress
al9
%ﬁ "

nToMovie

$27:persehityy

Figure 2: The smallest synthetic model in the graph viewer

values of interest. Furthermore, we request GRGEN to generate sorting code for the def pattern enti-
ties avgRating and numMovies with the declaration of the auto-generated matches accumulation filters
orderDescendingBy<avgRating> and orderDescendingBy<numMovies>.

We use the rule twice, ordering the matches differently. The sequence
[couplesWithRating\orderDescendingBy<avgRating>\keepFirst (15)]
executed from GRSHELL asks for all matches of the rule couplesWithRating, then sorts them de-
scendingly by the avgRating pattern variable, then throws away all but the first top 15 matches. The
other value of interest is handled in exactly the same way.

You can inspect the found results with the debugger of GRGEN.NET. It highlights the matched
pattern of the (currently executed) rule in the current graph, and displays the effects of the rewriting
step before it leads to the follow-up graph. This only works with the full graph for the smaller auto-
generated and the smallest IMDB-derived graph, though. The larger graphs are too costly to visualize
(which simply poses a general problem of large graphs irrespective of the chosen viewer — besides you
would get lost in a haystack). But we can configure the debugger with dump add graph exclude to
show only the matched entities, plus the one-step connected elements as context. This way we can still
inspect what GRGEN found. In[Figure 4can you see a visualization of the match with most connections,
in layout Circular (take a look at MovieDatabaseLayout.grs to find out about the visualization
configuration applied to reach this). We achieved this by executing the sequence
$% [couplesWithRating\orderDescendingBy<numMovies>\removeFirst (0)\keepFirst (1)]
in debug mode. First all matches are sought, then they are ordered descendingly alongside the number
of common movies, then the first O matches (i.e. nothing) are removed — increase this value to k to
inspect the kth match from the matches found. Afterwards,all but the first 1 remaining match is removed
— increase this value to k to inspect the first k£ remaining matches at once. The $ chooses one match from

Edgar Jakumeit 5

rule couplesWithRating
{
c:Couple;
c -:pl-> pnl:Person;
c -:p2-> pn2:Person;

def var avgRating:double;
def var numMovies: int;
yield {
yield avgRating = c.avgRating;
yield numMovies outgoing(c, commonMovies).size();

}
modify {
emit("avgRating:," + avgRating + "_numMovies:_ " + numMovies
+ ", by," + pnl.name + " and," + pn2.name + "\n");
}

} \ orderDescendingBy<avgRating>, orderDescendingBy<numMovies>

Figure 3: couplesWithRating rule

all matches found that remain after sorting and filtering, the % allows you to cycle through the matches
in the debugger.

Cliques

The other extension tasks asking to find cliques of actors are solved with manually coded rules for the
sizes 3,4, and 5 as a straightforward generalization of the couples-based task. GRGEN.NET does not
support built-in higher-order or meta-programming (and it is unlikely it will do so in the future, because
in our eyes its cost-benefit ratio is too bad: it is seldom needed in practice, yields badly understandable
code, and is difficult to implement in a compiled approach).

4 Getting it fast

The most important point to understand when optimizing for speed is that the expensive task is the search
carried out during pattern matching.

Searching is carried out with a backtracking algorithm following a search plan in a fixed order,
binding one pattern element after another to a graph element, checking if it fits to the already bound
parts. If it does fit search continues trying to bind the next pattern element (or succeeds building the
match object from all the elements bound if the last check succeeds), if it does not fit search continues
with the next graph element; if all graph element candidates for this pattern element are exhausted, search
backtracks to the previous decision point and continues there with the next element.

Typically, the first pattern element is determined with a lookup operation reaching into the graph,
binding the pattern element to a graph element of the required type (the less elements of that type exists,
the better); then neighbouring elements are traversed following the graph structure (the less neighbouring
elements exists, the better), until a match of the entire pattern is found.

6 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

—————————— e] B Administrator. Micro ok Windows Viea XA DEEUG Bule Erurenment - gronell MoveDatapase ors || =T e]
L - il PN 2V e i it
o5 it
tep wp. ste

=] sesé.arg | El MovieDatabaseCiaues5 grg | B terated_repl 201
T % use the Lines below to smploy = [
5 4new set statistics "Hoviestats o
==X

%, yComp Version 13.14
File Edit View Navigate Layout Help

Lads 9¢ Kb AaamEHA AR @b

D]

$1DC21Yormmaniicie 958
$6F279:pergqnToMoyj
9687 persoyToMGvie $568BE PerkonToMovie

$1GC20:conmonhayiés ©

BF292. oM ovi;
Fna:]

Hext [Prey| -
[T Root 2]
[s15B28:Movies Guy
[) s15B2C Movies Guy
[s1582D:Movies Guy,
[} 515B2E Hovies Guy
[} 515B2F Movies Guy
[515831 Movies Guy
[515833:Movies Guy |

$6F2E Npsrson e $56852:p; ol
$1D1 cormgnonijoy 68 personTaMovie

$BF 2F] oMovi

F30A oM $p63T
IDCTECommaniviRy onToMovie

[) s15834:Movies Guy
[s15835Movies Guy
[} 515837 :Movie5 Guy.
[} 515838 Movies Guy

Moyie, personToMovie
$OFR1F:persqnTol
1DC3% cémmonMovigls

<<pnt>>
[s15838Hovies Guy eon prn =N (o Afgr
[stsBac:hovies Guy $1DC1B Couple S e
[0 515B3E Hovies Guy avgRating = 0.660869565217391 ; ;

[51583FMovies Guy
[s15B40:Movies Guy. 31:commontdovie: Movie
[} 515B41:Movies Guy (%5)(833 CEh

D s15B45Movies Guy

[) $15B46:Movies Guy s

<<pn2=> s
n

) 515847 Havies Guy $DAdD Actor abel R
[s15B42:Hovies Guy b, Sal 10 Man Cum Siam 10
[} 515849 Movies Guy. rating =0
[) $161ED:Movie3 Sor Woviestype : MovieType VIDEQ
[516581 Hovie24 Ho Movie:fitle:string 10 Man Cum Slam 10
[s16sEB Hovie2398: ——— o
) 16843 aviezs Cu Woviesratng - dou
[s168571:Movie2 Your
[} 516B5C Movie2 Wor
[} 516BCD:Movie2 of a
[s1609F Hovie1997
[5171D4Movie18 an

[517107 Movie1s and< |
0 D] T Tv

[¢]

Figure 4: Debugging the top match from the 10000 movies file

Initial and Host-Graph-Adapted Search Plans

For each pattern, GRGEN.NET creates a static un-optimized search plan. You can inspect it for each
rule with the custom actions explain command. For findCouples it delivers the output displayed
in|Figure 5

The graph is entered with a lookup of a personToMovie edge, then the candidates for the source
node pn1l and the target node m1 are extracted from it. Afterwards the other personToMovie edge is
matched in reverse from the movie to pn2. Several elements in the independent are handed in as already
matched presets from the outer pattern, then the personToMovie edges are taken from pn1 to the movies
m2 and m3, and finally the personToMovie edges from pn2 are matched, with an implicit check that the
target movie is the same as the one already matched.

We see here an automatically applied optimization, the movie m1 was inlined from the independent
pattern to its containing pattern. Without this optimization, pnl and pn2 would have to be enumerated
in the main pattern unconnected, resulting in the unfolding of the cartesian product of all Person nodes,
before handing it in to the matcher of the nested independent pattern to purge the actors without a con-
necting movie. This is a crucial optimization that saves us from the execution time explosion of the
O(nn) cartesian product.

We can do better with search plans adapted to the host graph, towards this end we issue a custom
graph analyze followed by a custom actions gen_searchplan command. The first computes
some information about the multiplicities of the types and esp. the multiplicities of the connections
in between the types from the host graph, the latter re-generates the matchers at runtime based on those
graph characteristics gathered, replacing the auto-generated ones. For the small IMDB graphs, this

Edgar Jakumeit 7

static search plans
findCouples:
lookup -_edgeO_inlined_idpt_O:personToMovie-> in graph
from <-_edgeO_inlined_idpt_O- get source pnl:Person
from -_edgeO_inlined_idpt_0-> get target ml_inlined_idpt_O:Movie
from ml_inlined_idpt_O incoming <-_edgel_inlined_idpt_O:personToMovie-
from <-_edgel_inlined_idpt_O- get source pn2:Person
independent {
(preset: pnl)
(preset: ml after independent inlining)
(preset: pn2)
(preset: _edge0 after independent inlining)
(preset: _edgel after independent inlining)
from pnl outgoing -_edge2:personToMovie->
from -_edge2-> get target m2:Movie
from pnl outgoing -_edge4:personToMovie->
from -_edge4-> get target m3:Movie
from pn2 outgoing -_edge3:personToMovie->
from pn2 outgoing -_edgeb:personToMovie->

Figure 5: Initial search plan

results in a lookup of m1, extending on the one side to pn1, and on the other to pn2. For the large IMDB
graph this results in a lookup of pn1, extending to m1, then extending to pn2; this leads to a small runtime
improvement, esp. together with a later attribute condition.

Profiling and Pruning

Things still are getting really slow with increasing graph sizes for the IMDB graphs. We must go into
greater details — let’s start profiling. We do so with the new set profile on command at the begin
of the shell file before the graph is created, and a show profile findCouples command thereafter.
We see massive increases in the number of search steps with the graph sizes, hinting at an O(n *n)
algorithm. Inspecting the top connected matches visually and aligning them with the search plan we
understand why: the pattern matcher has to follow all edges from pn1 on and all edges from pn2 on, to
find and bind the common movies, giving us an O(n*n) iteration (with n being the number of adjacent
movies). The iteration is not much of an issue for actors with few connections (i.e. sparse graphs), but
gets very expensive for massively connected actors. Here we simply have to revert to a non-pattern based
approach to compute the set of common nodes. You see it displayed in with an intersection of
two sets, which is O(n) because the hash set lookup employed by the intersection operator & is O(1).
We applied a further optimization that prunes the search space earlier. Instead of finding and ma-
terializing the automorphic matches, just to remove them later on with an automorphic matches filter,
we reject them straight ahead. To this end, we require that the unique id of the actor bound to pn1 is
smaller than the unique id of the actor bound to pn2. Unique ids are unique integer numbers assigned by
GRGEN.NET after they have been requested with a node edge unique declaration in the model (they

8 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

rule findCouplesIntermediateOptl

{
pnl:Person; pn2:Person;
independent {
pnl -:personToMovie-> ml:Movie <-:personToMovie- pn2;
if{ (adjacentOutgoing(pnl, personToMovie) &
adjacentOutgoing (pn2, personToMovie)).size() >= 3; }
}
if{ uniqueof (pnl) < uniqueof (pn2); }
modify {
c:Couple;
c -:pl-> pnil;
c -:p2-> pn2;
ezec([addCommonMoviesIntermediateOpt(c, pnl, pn2)]);
}
}

Figure 6: 1st optmization step: findCouplesIntermediateOpt1

render deletion a bit more expensive, which is why they are not active by default).

Furthermore, we optimize addCommonMoviesAndComputeAverageRanking. Instead of iterating
all common movies from within one rule application, computing the averages from the iterated patterns,
do we only add the common movies in this step without averaging (more is not requested), with an all-
bracketed application of addCommonMovies which saves us the overhead of the graph parser employed
in matching iterated, alternative, and subpatterns. Those costs are not huge, but they can be felt.

Further Pruning and Strength Reduction

The set intersection already helped regarding the big-O, we still can do better: only 3 common movies
are needed, so we replace it with a dedicated algorithm that iterates one set and checks whether the
movies are available in the other, leaving early after 3 such movies were found. In excess, this algorithm
only needs to allocate and fill one single set, which saves us considerable overhead.

The helper function atLeastThreeCommonMoviesIntermediateOpt2 displayed in
takes two Persons pnl and pn2 as arguments and returns true if they are linked by at least three
common movies, and returns false otherwise. For each movie, it checks with a hash set lookup in O(1)
whether it is common to the persons.

We even use an adaptive helper function here; we first find out what is the node with the smaller
amount of adjacent Movie nodes by counting them, before we build the hash set from that smaller
neighbourhood. The extra effort of counting pays off, hash set allocating and building is expensive
(which is why we don’t use hash sets in implementing the pattern matchers, in most cases they lead to a
considerable slowdown compared to the nested loops employed there).

We prune the search space still further by exploiting the “’long tail”, the fact that there are many
actors existing that performed in less than 3 movies (in strong contrast to the massively connected actors
that cause the major pattern matching issues). So we check in the resulting findCouplesIntermedia-
teOpt2 given in for actors with at least 3 adjacent movies.

Finally — for this optimization step — we introduce a helper procedure addCommonMoviesInter-

Edgar Jakumeit 9

mediateOpt shown in[Figure 14{that employs the same set based algorithm for adding commonMovies
edges to all the common nodes.

Index usage and Parallelization

In the previous section we introduced quite some adjacent node counting (equalling incident edge count-
ing). We can do better here with an index. GRGEN supports attribute indices for quick access to graph
elements based on their attribute values, and incidence count indices for quick access to nodes based
on their number of incident edges, maintained in the background by the engine. Here we declare an
incident edge index countPersonToMovie in the model file, and use it in the rules with countPer-
sonToMovie[element] to get O(1) access to the needed counts instead of having to iterate the list of
incident edges, counting them.

You see a further minor optimization in the resulting rule with application of hom-declarations, they
allow the pattern elements to match the same graph elements. The default is isomorophy, which needs to
be checked. This is done efficiently, but here we want to squeeze out as much as possible, so we remove
the checks — we can do so because the unique id checking already ensures that the pattern elements are
not matched to the same host graph elements.

Until now we were concerned with minimizing the amount of work to be carried out for the speci-
fication. But with ourdays multicore machines there is an alternative strategy available: maximize the
amount of workers thrown on the work. Applying both as possible will of course yield the best results.

Parallelization brings locking and work distribution overhead with it, so it is not for free performance-
wise. For tasks with only litte search work to be carried out it makes things run slower. But a task with
an expensive search like ours — remember the huge number of search steps shown by profiling — benefits
considerably from it.

You apply parallelization in GRGEN.NET with a parallelize annotation at a rule, specifying the
maximum amount of worker threads to use. Only the matcher is parallelized, and only the first search
operation which causes a splitting in the search space, i.e. a lookup that splits work alongside all elements
of the type requested, or an extension with a edge that splits work alongside all incident edges. (The full
transformation including rewriting won’t be parallelized as it was done in the prototype employed in
[S] because of the in our eyes too bad cost-benefit-ratio: the task where most benefits can be gained is
searching for a match, a parallelization of rewriting would render the programming model to the user
much more complicated, and would require graph partitioning (locking would eat up all performance
gains), which is a difficult problem on its own, and esp. so for a general-purpose tool that must work for
many different graph representations).

The final optimized rule is shown in[Figure 7] and its helper functions and procedures in

and its search plan is listed in

5 Calling from API and Performance Results

The task description asks for a standalone command line version for benchmarking. We supply a C#-
Program that employs the GRGEN.NET API towards this end, which can be found in MovieDatabaseBench-
marker. cs. It expects as first parameter the name of the rule to apply (findCouplesOpt, findClique-
s0£30pt, findClique0f40pt, £indClique0f50pt), and as second parameter either the graph to im-
port (e.g. imdb-0005000-50176.movies.xmi.grs), or the number of iterations to use in generating
the synthetic test graph. An additional sequence may be given in quotes, intended for emitting the sorted

10 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

rule findCouplesOpt[parallelize=16]

{
pnl:Person; pn2:Person;
hom(pnl,pn2);
independent {
pnl -p2ml:personToMovie-> ml:Movie <-p2m2:personToMovie- pn2;
hom(pnl,pn2); hom(p2ml,p2m2);
if{ atLeastThreeCommonMovies(pnl, pn2); }
}
if{ uniqueof (pnl) < uniqueof (pn2); 1}
if{ countPersonToMovie[pnl] >= 3; }
if{ countPersonToMovie [pn2] >= 3; }
modify {
c:Couple;
c -:pl-> pnil;
c -:p2-> pn2;
eval { addCommonMovies(pnl, pn2, c); }
}
}
Figure 7: findCouplesOpt rule
results.

The standalone version contains a further optimization that can be only applied on API level. After
importing the IMDB graphs, it reduces the named graphs to unnamed graphs, throwing away the name
information. The GRSHELL always employs named graphs, they supply the names that can be seens in
the debugger, and the names that are written in grs-serialization and read in again in de-serialization. The
name information consists of a hash map from names to graph elements, and one hash map from graph
elements to names. That sounds rather innocent, but requires about as much storage space as the plain
GRGEN-graph, which accumulates to gigabytes for the large test graphs. Throwing this information away
reduces the maximum memory requirements considerably, saves the engine from name maintenance on
inserts, and allows for better cache utilization (depending on the allocation pattern of the .NET runtime).

6 Conclusion

We first specified a clean and simple solution of the movie database task in the GRGEN languages, then
we optimized it for performance. The tool supported us in validating the solution with its graphical
debugger, and in optimizing it with its search plan explanation and profiling instrumentation for search
step counting.

GRGEN.NET search planning can be compared to searching straw stars on a freshly harvested field,
by looking at the places where the ground is only slightly covered, only reaching into the haystacks when
they can’t be circumvented at all. A pattern matcher is generated based on the assumption that search
planning worked well in circumventing those haystacks. Here the task consists solely of diving within
a hay stack, a particularily large and interwoven one. So we had to replace to a considerable degree the
elegant and declarative pattern matcher with its loop-nesting based implementation (being well adapted
to sparse graphs), by imperative hash set based helper functions — highlighting the availability of the

Edgar Jakumeit 11

static search plans from Moviestats
findCouplesOpt:

para
if {
from
from
from
from
if {
if {

llelized lookup pnl:Person in graph

depending on findCouplesOpt_node_pnl, }

pnl outgoing -p2ml_inlined_idpt_O:personToMovie—>
-p2ml_inlined_idpt_0-> get target ml_inlined_idpt_O:Movie
ml_inlined_idpt_O incoming <-p2m2_inlined_idpt_0:personToMovie-
<-p2m2_inlined_idpt_0O- get source pn2:Person

depending on findCouplesOpt_node_pn2, }

depending on findCouplesOpt_node_pnl,findCouplesOpt_node_pn2, }

independent {

(preset: pnl)

(preset: ml after independent inlining)

(preset: pn2)

if { depending on findCouplesOpt_node_pnl,findCouplesOpt_node_pn2, }
(preset: p2ml after independent inlining)

(preset: p2m2 after independent inlining)

Figure 8: Final search plan

right language constructs for about any task built on a graph-based representation.

On a quad core processor, the synthetic benchmark graph was processed in about 100sec for the

couples, the 3 cliques in about 55sec, the 4 cliques in about 28sec, and the 5 cliques in about 56sec . The
entire IMDB was searched for all couples performing in at least three movies in about 420sec, the found
couples were linked to all of their common movies in about another 200sec. The cliques show a stunning
computation time explosion, from 5 secs for cliques of 3, over something less than 2 minutes for cliques
of 4, to about 2 and a half hours for cliques of 5, already on the smallest IMDB graph.

References

[1] Jakob Blomer, Rubino Geifl & Edgar Jakumeit (2014): The GrGen.NET User Manual. http://www.grgen.

(2]
(3]

[4]

net.

Tassilo Horn, Christian Krause & Matthias Tichy (2014): The TTC 2014 Movie Database Case.

Edgar Jakumeit: SHARE demo related to the paper Solving the TTC 2014 Movie Database Case with Gr-
Gen.NET.

Edgar Jakumeit (2011): EBNF and SDT for GrGen.NET. Technical Report. Available at www.info.
uni-karlsruhe.de/software/grgen/EBNFandSDT.pdf? Presented at AGTIVE 2011.

Jochen Schimmel, Tom Gelhausen & Christoph A. Schaefer (2009): Gene Expression with General Purpose
Graph Rewriting Systems. In: Proceedings of the 8th GT-VMT Workshop, Electronic Communications of the
EASST 18. Available at journal.ub.tu-berlin.de/eceasst/article/view/276/259

http://www.grgen.net
http://www.grgen.net
www.info.uni-karlsruhe.de/software/grgen/EBNFandSDT.pdf?
www.info.uni-karlsruhe.de/software/grgen/EBNFandSDT.pdf?
journal.ub.tu-berlin.de/eceasst/article/view/276/259

12 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

A Code Listings

rule addCommonMoviesAndComputeAverageRanking(c:Couple, pnl:Person, pn2:Person)

{
iterated it {

pnl -:personToMovie-> m:Movie <-:personToMovie- pn2;
modify {
c —-:commonMovies-> m;
eval { yield sum = sum + m.rating; }
}
}
modify {
def var sum:double = 0.0;
eval { c.avgRating = sum / count(it); }
}

Figure 9: addCommonMoviesAndComputeAverageRanking rule

Edgar Jakumeit 13

function atLeastThreeCommonMovies (pnl:Person, pn2:Person) : boolean
{
if(countPersonToMovie [pnl] <= countPersonToMovie [pn2])
{
def var common:int = O0;
def ref movies:set<Node> = adjacentOutgoing(pnl, personToMovie);
for (movie:Node in adjacentOutgoing(pn2, personToMovie))
{
if(movie in movies) {
common = common + 1;
if(common >= 3) {
return(true) ;
}
}

}
else
{
def var common:int = O0;
def ref movies:set<Node> = adjacentOutgoing(pn2, personToMovie);
for(movie:Node in adjacentOutgoing(pnl, personToMovie))
{
if(movie in movies) {
common = common + 1;
if(common >= 3) {
return(true);
}
}
}
}
return(false);

}

Figure 10: atLeastThreeCommonMovies helper function

14 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

procedure addCommonMovies (pnl:Person, pn2:Person, c:Couple)

{
if(countPersonToMovie [pnl] >= countPersonToMovie [pn2])
{
def ref movies:set<Node> = adjacentOutgoing(pn2, personToMovie);
for(movie:Node in adjacentOutgoing(pnl, personToMovie))
{
if(movie in movies) {
add (commonMovies, c, movie);
}
}
}
else
{
def ref movies:set<Node> = adjacentOutgoing(pnl, personToMovie);
for (movie:Node in adjacentOutgoing(pn2, personToMovie))
{
if(movie in movies) {
add (commonMovies, c, movie);
}
}
}
return;
}

Figure 11: addCommonMovies helper procedure

Edgar Jakumeit

function atLeastThreeCommonMoviesIntermediateOpt2(pnl:Person, pn2:Person)

{
if(countAdjacentOutgoing(pnl, personToMovie) <= countAdjacentOutgoing(pn2,
{

def var common:int = O0;

def ref movies:set<Node> = adjacentOutgoing(pnl, personToMovie);
for (movie:Node in adjacentOutgoing(pn2, personToMovie))

{

if(movie in movies) {
common = common + 1;
if(common >= 3) {
return(true) ;

}
}
}
}
else
{
def var common:int = O0;
def ref movies:set<Node> = adjacentOutgoing(pn2, personToMovie);
for(movie:Node in adjacentOutgoing(pnl, personToMovie))
{
if(movie in movies) {
common = common + 1;
if(common >= 3) {
return(true);
}
}
}
}

return(false);

}

Figure 12: atLeastThreeCommonMoviesIntermediateOpt2 helper function

15

boolean

personToMovie))

16 Solving the TTC 2014 Movie Datebase Case with GrGen.NET

rule findCouplesIntermediateOpt2
{
pnl:Person; pn2:Person;
independent {
pnl -:personToMovie-> ml:Movie <-:personToMovie- pn2;
if{ atLeastThreeCommonMoviesIntermediateOpt2(pnl, pn2); 1}
}
if{ uniqueof (pnl) < uniqueof (pn2); }
if{ countAdjacentOutgoing(pnl, personToMovie) >= 3; }
if{ countAdjacentOutgoing(pn2, personToMovie) >= 3; }

modify {
c:Couple;
c -:pl-> pnil;
c -:p2-> pn2;

ezec([addCommonMoviesIntermediateOpt(c, pnl, pn2)]);
}
}

Figure 13: findCouplesIntermediateOpt2 helper function

rule addCommonMoviesIntermediateOpt (c:Couple, pnl:Person, pn2:Person)

{

pnl -:personToMovie-> m:Movie <-:personToMovie- pn2;
modify {

c -:commonMovies-> m;
}

Figure 14: addCommonMoviesIntermediateOpt helper procedure

	What is GrGen.NET?
	Data transformation
	Getting it right
	Getting it fast
	Calling from API and Performance Results
	Conclusion
	Code Listings

