
The Movie Database Case: A solution using the
Maude-based e-Motions tool

Antonio Moreno-Delgado and Francisco Durán

University of Málaga
{amoreno,duran}@lcc.uma.es

Abstract. The paper presents solutions for the TTC 2014 Movie Database
Case, both in the e-Motions DSML and in the rewriting-logic formal lan-
guage Maude. The DSLs defined in e-Motions are automatically trans-
formed into Maude specifications, which are then used for simulation and
analysis purposes. However, since e-Motions is a general purpose lan-
guage, in which real-time languages may be modeled, with full support
for OCL and other advanced features, the Maude specifications auto-
matically generated are not as efficient as one would like. Since most of
these features are not needed for the current tasks, we propose solutions
both in e-Motions and in Maude, trying to highlight the main features
of both languages. The fact that the solutions given directly in Maude
lack the overhead included by e-Motions to deal with all those features
it provides that are not needed in the current case study, makes these
solutions much more efficient, and able to deal with bigger problems.

1 Introduction

Maude [3, 4] is an executable formal specification language based on rewriting
logic, which counts with a rich set of validation and verification tools [4, 5], in-
creasingly used as support to the development of UML, MDA, and OCL tools
(see, e.g., [2, 14, 6]). Furthermore, Maude has demonstrated to be a good environ-
ment for rapid prototyping, and also for application development (see surveys [4,
10]).

Maude may be seen as a general framework where to develop model trans-
formations. Thus, Meseguer and Boronat use it to implement their model trans-
formation framework MOMENT2; Durán, Vallecillo and others have used it to
develop e-Motions [12], a tool that supports the definition and simulation of real-
time Domain-Specific Modeling Languages (DSMLs); and similar approaches
have later been used to give semantics to ATL [16] and other transformation
languages.

The e-Motions tool is a DSML and graphical framework developed for Eclipse
that supports the specification, simulation, and formal analysis of real-time sys-
tems. It provides a way to graphically specify the dynamic behavior of DSMLs
using their concrete syntax, making this task quite intuitive. Furthermore, e-
Motions behavioral specifications are models too, so that they can be fully inte-
grated in MDE processes.

2

In e-Motions, MOF metamodels are formalized in rewriting logic, providing
a representation of the structural aspects of any modeling language with a MOF
metamodel. Then, given a description of the behavior of such modeling language
as in-place transformation rules, e-Motions may be used to define both the syntax
and the operational semantics of DSMLs. Artifacts developed in e-Motions are
automatically translated into Maude.

As we will see in the following sections, e-Motions provides a very rich set of
features, that enables the formal and precise definition of real-time DSMLs as
models in a graphical and intuitive way. It makes use of an extension of in-place
model transformation with a model of timed behavior and a mechanism to state
action properties. The extension is defined in such a way that it avoids artifi-
cially modifying the DSML’s metamodel to include time and action properties.
Moreover, it supports attribute computations and ordered collections, which are
specified by means of OCL expressions, thanks to mOdCL [13]. All these features
makes the language very expressive, but directly impact on its performance. To
gain an idea of this impact, we provide below solutions to the proposed problems
both in e-Motions and directly in Maude and compare them.

The e-Motions system documentation and several examples are available at
http://atenea.lcc.uma.es/e-Motions. The Maude web site is at http://

maude.cs.uiuc.edu.

1.1 e-Motions

The definition of a Domain-Specific Language (DSL) typically comprises three
tasks: (i) the definition of its abstract syntax, (ii) the definition of its concrete
syntax and (iii) the specification of its behavior.

In e-Motions the abstract syntax is defined by means of an Ecore metamodel,
in which all the language concepts and the relations between them are specified.
The concrete syntax is provided by defining the so-called Graphical Concrete
Syntax (GCS). A GCS is a model (conforms the GCS metamodel) where an
image is attached to each concept defined in the abstract syntax.

In e-Motions the behavior of a DSL is specified using visual graph-transformation
rules. An e-Motions rule consists of a Left-Hand Side (LHS), a Right-Hand Side
(RHS) and zero or more Negative Application Conditions (NACs). The LHS de-
fines a (sub)-graph matching, optionally conditional. The RHS specifies a (sub)-
graph replacement, which if the rule is applied, every object in the LHS that is
not in the RHS is deleted, new objects in the RHS that are not in the LHS are
created, and those objects whose attributes (or links) are changed are updated.
NACs specify conditions or (sub)-graphs such that if there is a matching, the
rule cannot be fired.

Figure 1 shows an example of an e-Motions rule. The objects in both the
RHS and LHS are represented by their associated images, as defined in the GCS
model. Rule Assemble’s LHS defines the precondition of the rule. It models an
assemble machine who needs both a head and a handle in its connected conveyor.
If NAC1, stating that the current matched Assemble object is not involved in
other Assemble action, is not satisfied, the rule can be applied. The rule is

3

applied as follows. All objects in its LHS which do not appear in its RHS are
deleted, i.e., objects he and ha. Those objects in its RHS which do not appear
in its LHS are created, properly setting their attributes, i.e., the ham object with
its three attributes. The rest of the objects remain changeless. Moreover, as
e-Motions is a framework where to define real-time systems, each rule is applied
in a established time, i.e. [prodTime,prodTime] in the Assemble rule. A rule
with execution time [0,0] is considered instantaneous. A rule may contain zero
or more local or auxiliary variables. All attribute or variable assignments and
conditions are expressed using Object-Constraint Language (OCL) [11].

The abstract and concrete syntax, and the behavior of a DSL are mod-
els, and the e-Motions tool has been developed following MDE principles. The
Maude code corresponding to a system defined in e-Motions is generated by an
ATL/TCS transformation [15].

Fig. 1: e-Motions Assemble rule.

1.2 Rewriting Logic and Maude

Rewriting logic (RL) [9] is a logic of change that can naturally deal with state
and with highly nondeterministic concurrent computations. In RL, the state
space of a distributed system is specified as an algebraic data type in terms of
an equational specification (Σ,E), where Σ is a signature of sorts (types) and

4

operations, and E is a set of equational axioms. The dynamics of a system in
RL is then specified by rewrite rules of the form t → t′, where t and t′ are Σ-
terms. This rewriting happens modulo the equations E, describing in fact local
transitions [t]E → [t′]E . These rules describe the local, concurrent transitions
possible in the system, i.e. when a part of the system state fits the pattern
t (modulo the equations E) then it can change to a new local state fitting
pattern t′. Notice the potential of this type of rewriting, and the very high-level
of abstraction at which systems may be specified, to perform, e.g., rewriting
modulo associativity or associativity-commutativity.

Maude [3, 4] is a wide spectrum programming language directly based on
RL. Thus, Maude integrates an equational style of functional programming with
RL computation. Maude also supports the modeling of object-based systems
by providing sorts representing the essential concepts of object (Object), mes-
sage (Msg), and configuration (Configuration). A configuration is a multiset of
objects and messages (with the empty-syntax, associative-commutative, union
operator __) that represents a possible system state.

Although the user is free to define any syntax for objects and messages, sev-
eral additional sorts and operators are introduced as a common notation. Maude
provides sorts Oid for object identifiers, Cid for class identifiers, Attribute for
attributes of objects, and AttributeSet for multisets of attributes (with _,_ as
union operator). Given a class C with attributes ai of types Si, the objects of
this class are then record-like structures of the form

< O : C | a1:v1, ..., an:vn >

where O is the identifier of the object, and vi are the current values of its
attributes (with appropriate types). See [4] for additional details on how object-
oriented systems are represented in Maude, including explanations on how to
represent inheritance, syntax for object-oriented modules, different forms of ob-
ject communication, etc.

The following Maude definitions specify a class Account of bank accounts,
with messages withdraw and transfer to operate with such bank accounts. The
Account class is defined with a single attribute balance, of sort Int, representing
the balance of an account. The withdraw message has two parameters, namely
the addressee of the message and the amount of money to withdraw from the
account. The transfer message will make the amount of money specified as its
third argument to be transferred from the account given as first argument to the
one given as second argument.

sort Account .

subsort Account < Cid .

op Account : -> Account .

op balance :_ : Int -> Attribute .

op withdraw : Oid Int -> Msg .

op transfer : Oid Oid Int -> Msg .

Rules debit and transfer below represent local transitions of the system that
specify the behavior of bank accounts upon the reception of such messages. E.g.,

5

if an Account object receives a withdraw message and the amount of money
to withdraw is smaller or equal than the balance of the account receiving the
message, then the message is ‘consumed’ and the balance of the account is decre-
mented is such an amount. Notice the synchronization of Account objects in the
transfer rule.

vars A B : Oid .

vars BalA BalB M : Int .

crl [debit] :

< A : Account | balance : BalA >

withdraw(A, M)

=> < A : Account | balance : BalA - M >

if BalA >= M .

crl [tranfer] :

< A : Account | balance : BalA >

< B : Account | balance : BalB >

withdraw(A, M)

=> < A : Account | balance : BalA - M >

< B : Account | balance : BalB + M >

if BalA >= M .

Notice that, since the __ operator is declared associative, commutative, and with
identity element, we do not need to worry about the order in which objects and
messages appear in the rules. And since rules describe local transitions, we do
not need to worry about the rest of the objects and messages in the configuration
either.

Well-formedness of objects may be automatically checked by Maude’s typing
system. For example, we can add declarations constraining Account objects:

sort AccountObject .

subsort AccountObject < Object .

var O : Oid .

var Bal : Int .

mb < O : Account | balance : Bal > : AccountObject .

Notice that with these declarations, an object < O : Account | > is a valid
term of sort Object, but since the membership cannot be applied on it, it is not
of type AccountObject.

2 Solution

We are presenting two solutions for the different tasks, one graphical solution
using e-Motions, and another one using directly Maude. Each task is solved by
defining respective DSLs, which share their abstract and concrete syntaxes. The
abstract syntax used is the one provided at [7] — we will see below that some of

6

the tasks have required extensions of this common syntax. The main differences
between the DSLs defined for the different tasks is in their concrete behaviors
describing what need to be done in each case, that is, the rewrite rules defining
the behavior depends on the concrete task and its solution.

The e-Motions description of the different tasks is then transformed into
a Maude specification and executed in Maude. We show how the formal tools
available in Maude allow us to check the transformations carried out. Specifically,
we will illustrate the use of Maude’s reachability analysis capabilities to check
that no undesired situation is reached along the execution.

Although the expressiveness of e-Motions is very welcome in complex prob-
lems, thanks to its capabilities to express problems visually, very intuitively and
in a language very close to the problem domain, the overhead to be paid in
cases like the ones at hand is too high. Specifically, the generality provided by
its support for OCL expressions and time requirements, makes that the Maude
code generated by the e-Motions tool is not as time performant as we would like.
However, the general purpose rewrite-modulo engine at the core of Maude may
also be used as a transformation language. Thus, together with the e-Motions
solution we present an optimized Maude solution for each task.

As we will see below, the Maude version of the transformation closely follows
the transformations provided in e-Motions, were all rewrite rules are instanta-
neous and expressions are solved directly by Maude built-in types instead of by
the OCL interpreter [13]. Indeed, for problems as simple as the ones at hand, we
will see that the representation distance between Maude and e-Motions to the
problem domain would be very small, making both solutions very appropriate.
Although a more in depth analysis of the problem at hand would most probably
have allowed us to even improve the numbers obtained, we have preferred to
keep the specification clear and intuitive.

2.1 Task 1

Task 1 comprises the generation of synthetic models (conforming the movie
database metamodel [8]) from an input parameter N ≥ 0. We first present an
e-Motions solution and then a Maude solution.

e-Motions-based solution. Following an e-Motions based approach, we define
the abstract and concrete syntax and the behavior of our so-called Task 1 DSL.
Taking a parameter N as input model, Task 1 DSL generates a model containing
synthetic data.

As it has been introduced in Section 1.1, the abstract syntax of a DSL is given
in e-Motions by means of an Ecore metamodel. Since we model the solution
of the task as a model that evolves until reaching its final solution, we take
as metamodel the one provided beforehand in [7], which we call Movies MM,
extended with a Parameter concept. This results in a so-called Movies* MM. The
class Parameter has two integer attributes, namely nP and nN, which represent
positive graphs and negative graphs, respectively, for the generation following
Henshin graphs [1].

7

(a) Actor. (b) Actress. (c) Movie. (d) Couple. (e) Parameter.

Fig. 2: Concrete syntax for Movies* MM.

For the concrete syntax, Figure 2 shows how an image has been attached to
each concept modeled in the Movies* MM.

The behavior of this Task 1 DSL is then given by means of two in-place
transformation rules: createPositive and createNegative. Figure 3a shows
the createPositive rule, which takes an object p of type Parameter, with
nP attribute greater or equal than 0, and produces synthetic data conforming
to the Henshin rules [1]. Figure 3b shows the createNegative rule, which is
analogously defined.

Once the syntax and the behavior of the system has been coded, the user
may specify a model, which conforms to Movies* MM, containing an object
Parameter with its two attributes nP and nN properly set. This model is used
as initial model of the execution.

Please, note that this solution is really close to the problem specification
in [8]. Figure 3 and [8, Figure 2], specifying the data generation, are almost the
same. This demonstrates how close the solution by e-Motions is to the problem
domain, and how convenient its graphical facilities are.

Maude solution. Our Maude-based solution for Task 1 consists of an object-
based Maude specification, consisting of two modules: the MOVIES@MM module
defining the classes structure, and the TASK1 module defining the rewrite rules
to calculate the solution. As in the e-Motions solution, we have two rewrite rules:
createPositive and createNegative. Listing 1.1 shows the createPositive

Maude rule, that takes the createPositive(s(N:Nat)) message and a freshOid
auxiliary message—used to create new object identifiers—and returns such a ob-
ject configuration conforming the Henshin specification [8]. A similar rule gener-
ates the negative cases. Please notice that the Maude solution is very much like
the e-Motions solution. In fact, the former could be seen as the textual version
of the latter.

Listing 1.1: createPositive Maude rule.

rl [createPositive] :

createPositive(s(N))

freshOid(N’)

=>

createPositive(N)

< N’ : Movie | rating: (10.0 * float(N)) >

< N’ + 1 : Movie | rating: (10.0 * float(N) + 1.0) >

< N’ + 2 : Movie | rating: (10.0 * float(N) + 2.0) >

8

(a) The createPositive rule. (b) The negativePositive rule.

Fig. 3: Task 1 rules.

9

< N’ + 3 : Movie | rating: (10.0 * float(N) + 3.0) >

< N’ + 4 : Movie | rating: (10.0 * float(N) + 4.0) >

< N’ + 5 : Actor | name: ("a" + string (10 * N, 10)),

movies: (N’, N’ + 1, N’ + 2, N’ + 3) >

< N’ + 6 : Actor | name: ("a" + string (10 * N + 1, 10)),

movies: (N’, N’ + 1, N’ + 2) >

< N’ + 7 : Actor | name: ("a" + string (10 * N + 2, 10)),

movies: (N’ + 1, N’ + 2, N’ + 3) >

< N’ + 8 : Actress | name: ("a" + string (10 * N + 3, 10)),

movies: (N’ + 1, N’ + 2, N’ + 3, N’ + 4) >

< N’ + 9 : Actress | name: ("a" + string (10 * N + 4, 10)),

movies: (N’ + 1, N’ + 2, N’ + 3, N’ + 4) >

freshOid(N’ + 10) .

Execution performance for both solutions. Table 1 shows the number of
rewrites and execution times for both solutions. As explained above, the execu-
tion times for the Maude specification obtained from the e-Motions definition
grows very quickly. Notice that, although the number of rewrites grows linearly
with respect to N , the time is exponential due to the infrastructure to deal with
all the extra features in e-Motions. However, notice how the number of rewrites
for the Maude solution grows linearly as well, but in this case the execution
times grow more slowly, being able to handle problems of much bigger sizes.

On the correctness of the transformation Maude provides a whole formal
environment where we can perform proofs of correctness of our solutions. In
addition to tools to verify the termination, confluence, etc. of our rewrite systems,
Maude provides a reachability analysis tool and a model checker, which are
particularly convenient for performing checks on the correctness of systems. Let
us consider here the Maude search command, which allows us to explore the
whole reachable state space, or up to a given depth, looking for states satisfying
a given condition.

For instance, following the results given in [8], for some N , the above rules
createPositive and createNegative create 20N objects, specifically, 10N
movies, 5N actresses, and 5N actors. We could check that the solution found
satisfies this condition, but we can do something more interesting by checking
that no final reachable state fails to satisfy it. Of course, if the rewrite system
is confluent and terminating the solution would be unique.

Given the numOfMovies operation, which takes an object configuration as
input and returns the number of movies in it, we may look for those final states
in which the number of movies will be different than 10N :

search createPositive(8) createNegative(8) freshOid(0)

=>! C:Configuration

such that numOfMovies(C:Configuration) =/= 10 * 8 .

10

e-Motions Maude

N Time (s) # Rewrites Time (s) # Rewrites

1 0.0 67

2 0.0 4,910 0.0 133

10 0.0 24,334 0.0 661

20 0.0 48,614 0.0 1321

100 0.6 242,854 0.0 6601

1000 55.7 2,428,054 1.7 66,001

2000 395.0 4,856,054 11.8 132,001

3000 31.5 198,001

4000 40.8 264,001

5000 65.8 330,001

6000 96.8 396,001

7000 133.4 462,001

8000 175.8 528,001

9000 224.5 594,001

10000 227.9 660,001

11000 337.4 726,001

Table 1: Times for the e-Motions and Maude solutions to Task 1

The arrow =>! means that it search for final states, that is, states that cannot
be further rewritten, starting from the given initial configuration, that satisfy
the given condition. Maude returns no solution for the above code, that means
all final states reached have exactly 10 movies:

No solution.

2.2 Task 2

Task 2 consists in finding all ‘couples’ from a given model, given that two persons
are a ‘couple’ if they played together in at least three movies [8]. Couples are
to be obtained either from the model obtained in Task 1 or from the IMBd
database [7]. Once again, we present solutions using e-Motions and Maude.

e-Motions-based solution. The solution for this task is implemented with
one single rule, createCouple, shown in Fig. 4. Person objects are shown using
square shapes because Person is an abstract class and it does not have attached
image. The createCouple rule models the creation of a couple by taking two
persons and generating a couple with them. The rule has two conditions: a
positive condition stating that “the number of movies in the intersection between
the movies of per1 and per2 is greater or equal than 3”; and a negative condition,

11

N Time (s) # Rewrites

2 0.7 524,781

10 46.7 19,453,091

20 660.1 161,741,321

Table 2: e-Motions times for Task 2 First Version.

the coupleHasNotBeenCreated NAC, requiring that the couple does not exists
yet.

Although very intuitive and simple, this solution is computationally very
expensive. Notice that the number of matchings in the LHS of the rule is com-
binatorial, leaving all the task to the evaluation of the conditions to accept or
discard the couples.

Fig. 4: createCouple rule.

We have implemented another solution in which we limit the number of
matchings using a very simple algorithm: For each person, we iterate on the
rest of persons looking for couples. With this algorithm, the number of persons
to match as candidate couples decreases significantly. To model this solution,
we extend the metamodel and its concrete syntax with a so-called Collection

concept. This class has three attributes, namely people, with the set of persons
to be handled, fixedPerson, to iterate on each person, and peopleDealtWith,
to keep the persons already considered to create a couple with the current ‘fixed
person’. Figures 5-9 show the rules specifying this solution:

– Rule initialRule in Figure 5 initializes the collection object assigning the
set of all actors and actresses to its people attribute (the other attributes

12

get default values). This rule is only fired if there is no collection object in
the model.

– Rule fixPerson in Figure 6 takes a person from the people set and takes it
as fixedPerson. Notice that p is removed from the people set.

– Rules doingCouples-AreCouple and doingCouples-AreNotCouple in Fig-
ures 7 and 8 take a person from the set people and the fixedPerson and
make a couple if the number of movies they share is greater or equal than
three. In both cases the person considered is passed to the peopleDealtWith
set.

– When all persons has been considered as couple of the current fixedPerson,
the nextPerson rule in Figure 9, takes the peopleDealtWith as new people

set.

Fig. 5: initialRule rule.

Fig. 6: fixPerson rule.

Maude-based solution. Again, we specify directly in Maude both solutions.
As for Task 1, the solutions match very closely their e-Motions counterparts.

The Maude specification of the first alternative solution to Task 1 is shown
in Listing 1.2. The rules takes two persons and creates a new couple if they share
three movies and such couple has not been previously created. Some numbers
for its execution are shown in Table 3.

Listing 1.2: createCouples Maude rule.

13

Fig. 7: doingCouples-AreCouple rule.

Fig. 8: doingCouples-AreNotCouple rule.

Fig. 9: nextPerson rule.

14

crl [findCouples] :

{ freshOid(N) findCouples

< O1 : V1:Person | movies : MS1 , Atts1 >

< O2 : V2:Person | movies : MS2 , Atts2 >

Conf }

=>

{ freshOid(s(N)) findCouples

< O1 : V1:Person | movies : MS1 , Atts1 >

< O2 : V2:Person | movies : MS2 , Atts2 >

< N : Couple |

commonMovies : (intersection ((MS1), (MS2))),

p1 : O1, p2 : O2 >

Conf }

if | intersection ((MS1), (MS2)) | >= 3

/\ not coupleInConf(C, Conf) .

N Time (s) # Rewrites

1 0.0 8,680

5 0.5 1,343,000

10 5.0 11,020,000

20 66.3 89,276,000

30 314.0 302,568,000

Table 3: Maude times for Task 2 First Version.

As for e-Motions, the second solution consists of several rules. In this case,
our collection object is model by an operator <{ }{ }{ }{ }{ }{ }> representing
an object with six attributes as its e-Motions counterpart: its arguments take,
respectively, the starting argument, the people set, the movies set, the dealt
people, the fixed person on which to iterate, and the result configuration. We
show in Listing 1.3 the code for the doingPairs rule. In the case of Maude,
we only need one rule to consider the positive and negative cases. The number
of rewrites and execution times for executions of different sizes are shown in
Table 4.

Listing 1.3: doingCouples Maude rule.

rl [doingPairs] :

< { none }

{ < O1 : V1@Person | movies : MS1 , Atts1 > C1 }

{ C2 }

{ C3 }

{ < O2 : V2@Person | movies : MS2 , Atts2 > }

15

{ freshOid(New) C4 } >

=>

< { none }

{ C1 }

{ C2 }

{ < O1 : V1@Person | movies : MS1 , Atts1 > C3 }

{ < O2 : V2@Person | movies : MS2 , Atts2 > }

{ if | intersection(MS1 , MS2) | >= 3

then < New : Couple | p1 : O1, p2 : O2,

commonMovies : intersection(MS1 , MS2),

avgRating : 0.0 >

freshOid(s New)

else freshOid(New)

fi

C4 } > .

N Time (s) # Rewrites

1 0.0 831

10 0.1 82,983

100 8.9 8,299,803

200 68.3 33,199,603

300 242.9 74,699,403

400 640.1 132,799,203

Table 4: Maude times for Task 2 Second Version.

2.3 Task 3

Given a model with couples already created, Task 3 consists in calculating the
average rating of shared movies for each of these couples. As for the previous
tasks, we provide solutions both in e-Motions and Maude.

e-Motions-based solution. The solution consists in one single rule, shown in
Figure 10, in which the average is calculated only once for each couple. Notice
the use of an action in the NAC of the rule to state that the value has not been
already calculated. The number of rewrites and execution times for N = 2, 10
are shown in Table 5.

Maude-based solution. The corresponding Maude rule specifying the solution
of this task is shown in Listing 1.4. Table 6 show the number of rewrites and
execution times for problems of sizes 100, 200, 300, and 400.

16

Fig. 10: computingAvgRating rule.

N Time (s) # Rewrites

2 0.0 4,527

10 2.1 891,432

Table 5: e-Motions times for Task 3.

Listing 1.4: Maude rule for Task 3 solution.

crl [avgRating] :

{ < M : Couple | commonMovies : MovieSet ,

avgRating : 0.0,

Atts1 >

couplesCalculated(Couples)

C

}

=>

{ < M : Couple | commonMovies : MovieSet ,

avgRating : sumAllRatings(MovieSet , C)

/ float (| MovieSet |),

Atts1 >

couplesCalculated ((M, Couples))

C

}

if not(M in Couples) .

N Time (s) # Rewrites

100 1.5 21,800
200 6.3 43,600
300 14.9 65,400
400 29.7 87,200

Table 6: Maude times for Task 3.

17

3 Conclusions

We have presented solutions for the TTC 2014 Movie Database Case both in the
e-Motions DSML and in the rewriting-logic formal language Maude.

e-Motions provides a very rich set of features, that enables the formal and
precise definition of real-time DSMLs as models in a graphical and intuitive way.
It makes use of an extension of in-place model transformation with a model of
timed behavior and a mechanism to state action properties. The extension is de-
fined in such a way that it avoids artificially modifying the DSML’s metamodel
to include time and action properties. Moreover, it supports attribute computa-
tions and ordered collections, which are specified by means of OCL expressions.
All these features makes the language very expressive, but directly impact on
performance.

The Maude solutions presented are also very intuitive and simple. The fact
that the solutions given directly in Maude lack the overhead included by e-Motions
to deal with all those features it provides that are not needed in the current case
study, makes the solutions given much more efficient, and able to deal with bigger
problems.

We believe that the Maude solutions could still be made more efficient, but
possibly at the cost of loosing elegance in the solutions.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D., Rou-
quette, N., Haugen, A. (eds.) Model Driven Engineering Languages and Systems,
Lecture Notes in Computer Science, vol. 6394, pp. 121–135. Springer Berlin Hei-
delberg (2010), http://dx.doi.org/10.1007/978-3-642-16145-2_9

2. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) Fundamental Approaches to Software Engineering, 11th Inter-
national Conference, FASE 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings. Lecture Notes in Computer Science, vol. 4961, pp.
377–391. Springer (2008)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.: Maude: Specification and programming in rewriting logic. Theor. Comput. Sci.
285, 187–243 (2002)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework: How to Spec-
ify, Program, and Verify Systems in Rewriting Logic, Lecture Notes in Computer
Science, vol. 4350. Springer (2007)

5. Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.: The
Maude formal tool environment. In: Mossakowski, T., Montanari, U., Haveraaen,
M. (eds.) Algebra and Coalgebra in Computer Science, Second International Con-
ference, CALCO 2007, Proceedings, Lecture Notes in Computer Science, vol. 4624,
pp. 173–178. Springer (2007)

18

6. Clavel, M., Egea, M.: ITP/OCL: A rewriting-based validation tool for UML+OCL
static class diagrams. In: Johnson, M., Vene, V. (eds.) Algebraic Methodology and
Software Technology, 11th International Conference, AMAST 2006, Kuressaare,
Estonia, July 5-8, 2006, Proceedings. Lecture Notes in Computer Science, vol.
4019, pp. 368–373. Springer (2006)

7. Horn, T.: IMDB2EMF, https://github.com/tsdh/imdb2emf
8. Horn, T., Krause, C., Ticky, M.: The TTC 2014 Movie Database Case, available

at TTC14 web site.
9. Meseguer, J.: Conditioned rewriting logic as a unifed model of concurrency. Theor.

Comput. Sci. 96(1), 73–155 (1992)
10. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7-8),

721–781 (2012)
11. OMG: Object constraint language (OMG OCL), v2.0 (2006), OMG Available Spec-

ification (formal/2006-05-01)
12. Rivera, J.E., Durán, F., Vallecillo, A.: On the behavioral semantics of real-time

domain specific visual languages. In: WRLA. pp. 174–190 (2010)
13. Roldán, M., Durán, F.: Representing UML models in mOdCL (2008), available at

http://maude.lcc.uma.es/mOdCL.
14. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and tool support for

model driven engineering with maude. Journal of Object Technology 6(9), 187–207
(2007)

15. The AtlanMod Team: ATL, http://www.eclipse.org/m2m/atl/doc/
16. Troya, J., Vallecillo, A.: Towards a Rewriting Logic Semantics for ATL. In: ICMT.

pp. 230–244 (2010)

