
Submitted to:
TTC 2014

© G. Szárnyas et al.
This work is licensed under the
Creative Commons Attribution License.

Movie Database Case: An EMF-INCQUERY Solution∗

Gábor Szárnyas Oszkár Semeráth Benedek Izsó Csaba Debreceni

Ábel Hegedüs Zoltán Ujhelyi Gábor Bergmann
Budapest University of Technology and Economics,

Department of Measurement and Information Systems,
H-1117 Magyar tudósok krt. 2., Budapest, Hungary

{szarnyas, semerath, izso, debrecenics, abel.hegedus, ujhelyiz, bergmann}@mit.bme.hu

This paper presents a solution for the Movie Database Case of the Transformation Tool Contest 2014,
using EMF-INCQUERY and Xtend for implementing the model transformation.

1 Introduction

The use of automated model transformations is a key factor in modern model-driven system engineering.
Model transformations allow to query, derive and manipulate large industrial models, including models
based on existing systems, e.g. source code models created with reverse engineering techniques. Since
such transformations are frequently integrated to modeling environments, they need to feature both high
performance and a concise programming interface to support software engineers.

The objective of the EMF-INCQUERY [3] framework is to provide a declarative way to define queries
over EMF models without needing to manually define imperative model traversals. EMF-INCQUERY

extended the pattern language of VIATRA with new features (including transitive closure, role naviga-
tion, match count) and tailored it to EMF models [2]. The semantics of the pattern language is similar to
VTCL [7], but the adaptation of the rule language is an ongoing work.

EMF-INCQUERY is developed with a focus on incremental query evaluation and uses the same in-
cremental algorithm as VIATRA. The latest developments extend this concept by providing a preliminary
rule execution engine to perform transformations. As the engine is under heavy development, the design
of a dedicated rule language (instead of using the API of the engine) is currently subject to future work.

Conceptually, the current execution environment provides a method for specifying graph transforma-
tions (GT) as rules, where the LHS (left hand side) is defined with declarative EMF-INCQUERY graph
patterns, defined in EMF-INCQUERY Pattern Language [2] and the RHS (right hand side) as imperative
model manipulations formulated in the Xtend programming language [5]. The rule execution engine is
also configured from Xtend code.

One case study of the 2014 Transformation Tool Contest describes a movie database transforma-
tion [6]. The main characteristics of the transformation related to the application of EMF-INCQUERY

are that i) it only adds new elements to the input model (i.e. couples and groups are created without
modifying the input model), and ii) it is non-incremental (i.e. adding a new group with a rule will not
affect the applicability of rules).

∗This work was partially supported by the MONDO (EU ICT-611125) and TÁMOP (4.2.2.B-10/1–2010-0009) projects.
This research was realized in the frames of TÁMOP 4.2.4. A/1-11-1-2012-0001 „National Excellence Program – Elaborating
and operating an inland student and researcher personal support system”. The project was subsidized by the European Union
and co-financed by the European Social Fund.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Movie Database Case: An EMF-INCQUERY solution

Java application

« notifies »

« modifies »

Movie model

Pattern

matcher

Rule execution

engine

Transformed

movie model

EMF

resources« monitors »

Rule

condition

Rule

consequence

Figure 1: Overview of the specification and runtime.

The rest of the paper is structured as follows: Section 2 gives an overview of the implementation,
Section 3 describes the solution including design decisions, benchmark results, and Section 4 concludes
our paper.

2 Architecture Overview

The overview of the rule-based solution is illustrated in Figure 1. The input of the transformation is a
movie model. The result is a transformed movie model containing additional model elements, includ-
ing various groups (couples and n-cliques) and their average rating [6]. The transformation runs in
a Java application, that uses pattern matchers provided by EMF-INCQUERY and model modification
code specified in Xtend. The model modifications are performed over EMF resources, while the pattern
matcher monitors the resources to incrementally update match sets. The application initially reads the
input movie database resource, creates the output resources (organizing them into a resource set), then
executes the transformation, and finally serializes the results into files.

The whole solution is implemented in two languages. Rule conditions are formulated as EMF-
INCQUERY graph patterns, while the rule consequences (model manipulations) in Xtend. Since the
advanced transformation constructs of EMF-INCQUERY are tailored for event-driven (incremental) ex-
ecution, the current solution only uses pattern matchers to access query results, without additional con-
structs.

3 Solution

3.1 Specification

In the provided Ecore model, no containment hierarchy is used and all objects are held in the contents
list of the EMF resource. However, this also means that the performance of the transformation can
be affected by the resource implementation used (since it will determine the implementation of the list
operations).

For performance considerations, we used an extended version of the metamodel, which has a Root

G. Szárnyas et al. 3

Person

nameG:GEString

Actor Actress

Couple

Movie
titleG:GEString
ratingG:GEDouble
yearG:GEInt
typeG:GMovieType

<<enumeration>>
MovieType

MOVIE
TV
VIDEO
VIDEOGAME

Group

avgRatingG:GEDouble
EAttribute0

Clique

RootContainedElement

movies 0..*

p1 0..1

p2 0..1

persons 0..*

commonMovies

0..*

persons
0..*

children 0..*

Figure 2: Our extended metamodel.

object (see Figure 2). This object serves as a container for all Group, Movie and Person objects. Accord-
ing to our experiments, this increases the speed of the pattern matching by a factor of two.

We ensured that our solution works with the models provided and also persists outputs in a format
that does not include the root element. This way, the transformation part of our solution is independent
of resource implementation (binary, UUID-based, regular XMI, etc.).

3.2 Patterns and Transformations

3.2.1 Task 1: Generating Test Data

The synthetic test data is generated in Xtend (see Listing A.2.1). The code tightly follows the specifica-
tion defined in the case description [6]. Since the task is simple model construction without any querying,
EMF-INCQUERY is not used in this task.

3.2.2 Task 2: Finding Couples

Couples are listed with the following pattern:
1 pattern personsToCouple(p1name , p2name) {
2 find cast(p1name , M1); find cast(p2name , M1);
3 find cast(p1name , M2); find cast(p2name , M2);
4 find cast(p1name , M3); find cast(p2name , M3);
5
6 M1 != M2; M2 != M3; M1 != M3;
7
8 check(p1name < p2name);
9 }

10
11 pattern cast(name , M) {
12 Movie.persons.name(M, name);
13 }
14
15 pattern personName(p, pName) {
16 Person.name(p, pName);
17 }

4 Movie Database Case: An EMF-INCQUERY solution

Note that the cast pattern returns the names of persons that play in a given movie. This is important
since the names of the persons can be used to avoid symmetric matches in the personsToCouple pattern
by sorting. The Couple objects are created and configured in Xtend (see createCouples in line 38 of
Listing A.2.2). This includes setting the p1 and p2 references using a personName pattern and computing
the commonMovies by simple set intersection operators (retainAll).

3.2.3 Task 3: Computing Average Rankings

The average rankings are computed in Xtend by calculating the mean of the rating attributes of a couple’s
common movies (see calculateAvgRatings in line 111 of Listing A.2.2). The movies are enumerated with
the following pattern:

1 pattern commonMoviesOfCouple(c, m) {
2 Couple.commonMovies(c, m);
3 }

3.2.4 Extension Task 1: Compute Top-15 Couples

This task is mostly implemented in Xtend (see topGroupByRating in line 62 and topGroupByCommon-
Movies in line 75 of Listing A.2.2), however, it uses the groupSize pattern in order to filter the groups
with the particular number of members.

1 pattern groupSize(group , S) {
2 Group(group);
3 S == count find memberOfGroup(_, group);
4 }

This pattern uses the count find construct which computes the number of matches for a given pattern.
Additionally, specific comparators are used to sort and determine the top-15 lists by rating or number of
common movies (see Listing A.2.3).

3.2.5 Extension Task 2: Finding Cliques

The pattern for finding cliques is implemented similarly to the personsToCouple pattern 3.2.2. The
pattern for 3-cliques is defined as follows:

1 pattern personsTo3Clique(P1, P2, P3) {
2 find cast(P1, M1); find cast(P2, M1); find cast(P3, M1);
3 find cast(P1, M2); find cast(P2, M2); find cast(P3, M2);
4 find cast(P1, M3); find cast(P2, M3); find cast(P3, M3);
5
6 M1 != M2; M2 != M3; M1 != M3;
7
8 check(P1 < P2); check(P2 < P3);
9 check(P1 < P3);

10 }

The creation of cliques is done similarly to couples (see createCliques in line 125 of Listing A.2.2).
However, this pattern has a redundant check constraint, as P1 < P2 and P2 < P3 already imply P1 < P3.
This works as a hint for the query engine and allows it to filter the permutation of the results (e.g.
(a2,a1,a3),(a1,a3,a2), . . .)) earlier.

To achieve high query performance, patterns for 4- and 5-cliques are defined manually. For larger
cliques (n > 5), patterns could be automatically generated using code generation techniques.

G. Szárnyas et al. 5

m m m mm

p0g0

g

Figure 3: Matching 3-clique groups in the positive test pattern. g0 is a couple.

General solution for n-cliques. We also provide the outline for a more general solution (for arbitrary
n values). For the sake of clarity, we will refer to couples as 2-cliques. In this approach, the cliques are
built iteratively. Suppose we already have all k-cliques in the graph (e.g. we already added the 2-, 3-, 4-
and 5-cliques with the previous patterns). To get the (k+1)-cliques, we look for a group g0 and a person
p0 that (i) have at least 3 movies in common, (ii) g = g0∪{p0} is a group that is not a subset of any other
groups (see Figure 3).

Formally, (ii) can be expressed as (6 ∃g′) : g ⊆ g′. Using g = g0 ∪ {p0}, we derive the following
expression (6 ∃g′) : (g0 ⊆ g′)∧(p ∈ g′). The g0⊆ g′ expression can be formulated as follows: (∀p0 ∈ g0) :
p0 ∈ g′. As the EMF-INCQUERY Pattern Language does not have a universal quantifier, we rewrite this
using the existential quantifier: (6 ∃p0 ∈ g0) : p0 6∈ g′.

The resulting expression for condition (ii) is the following: (6 ∃g′) : ((6 ∃p0 ∈ g0) : p0 6∈ g′)∧ (p ∈ g′).
This is equivalent to the following EMF-INCQUERY pattern:

1 /**
2 * This pattern returns with g0 and gx pairs , where Group g0 is a subset of Group gx.
3 */
4 pattern subsetOfGroup(g0 : Group , gx : Group) {
5 neg find notSubsetOfGroup(p0, g0, gx);
6 }
7
8 /**
9 * This pattern returns is a helper for the subsetOfGroup pattern.

10 */
11 pattern notSubsetOfGroup(p0 : Person , g0 : Group , gx : Group) {
12 find memberOfGroup(p0, g0);
13 neg find memberOfGroup(p0, gx);
14 }
15
16 /**
17 * This pattern returns p and g pairs , where Person p is a member of Group g.
18 * A Group is either a Couple or a Clique.
19 */
20 pattern memberOfGroup(p, g) {
21 Couple.p1(g, p);
22 } or {
23 Couple.p2(g, p);
24 } or {

6 Movie Database Case: An EMF-INCQUERY solution

25 Clique.persons(g, p);
26 }

Based on the subsetOfGroup pattern, we may implement the nextClique pattern like follows:
1 pattern nextCliques(g : Group , p : Person) {
2 neg find alphabeticallyLaterMemberOfGroup(g, p);
3 n == count find commonMovieOfGroupAndPerson(g, p, m);
4 check(n >= 3);
5 neg find union(g, p);
6 }
7
8 pattern alphabeticallyLaterMemberOfGroup(g : Group , p : Person) {
9 find memberOfGroup(m, g);

10 Person.name(p, pName);
11 Person.name(m, mName);
12 check(mName >= pName);
13 }
14
15 pattern commonMovieOfGroupAndPerson(g, p, m) {
16 find commonMoviesOfGroup(g, m);
17 Person.movies(p, m);
18 }
19
20 pattern commonMoviesOfGroup(g, m) {
21 Group.commonMovies(g, m);
22 }
23
24 pattern union(g0, p) {
25 find memberOfGroup(p, gx);
26 find subsetOfGroup(g0, gx);
27 }

Given a model containing all k-cliques, the nextClique pattern is capable of determining the (k+1)-
cliques. While this solution is functionally correct, it only works for very small input models and hence
is omitted from our implementation.

3.2.6 Extension Task 3: Compute Average Rankings for Cliques

The average rankings are computed the same way as in task 3 (section 3.2.3).

3.2.7 Extension Task 4: Compute Top-15 Cliques

The top 15 average rankings are computed the same way as in extension task 2 (section 3.2.5).

3.3 Optimizations

To increase the performance of the transformations, we used some optimizations.

• After the matcher engine produced the initial result set, the engine is turned off. This way, we spare
the cost of incrementally maintaining the result set. As the transformation is non-incremental, this
does not affect the result of the performance.

• The common movies of the two Person objects are computed from Xtend instead of EMF-INCQUERY.

• The patterns for 3-, 4- and 5-cliques are implemented manually.

We looked for common subpatterns and extracted them into separate patterns. This results in better
performance as the engine can reuse the pattern for each occurrence, and makes the query definition file
easier to maintain. For an example, see the cast pattern in A.1.

G. Szárnyas et al. 7

3.4 Build Automation

Our solution was developed in the Eclipse IDE. While it is fully functional in Eclipse, it can also be
compiled with the Apache Maven [1] build automation tool. This offers a number of benefits, including
easy portability and the possibility of continuous integration. The build process uses the Tycho Maven
plug-in [4] to build the Eclipse plug-ins defined in the project.

3.5 Benchmark Results

The implementation was benchmarked in the SHARE cloud, on an Ubuntu 12.04 64-bit operating system
running in a VirtualBox environment. The virtual machine used one core of an Intel Xeon E5-2650 CPU
and had 6 GB of RAM.

The benchmark used Maven to build the binary files. The transformations were ran in a timeout
window of 10 minutes.

3.6 Synthetic model

Results are displayed in Figure 4. The diagram shows the transformation times for creating couples and
cliques for synthetic models. The results show that the transformations run in near linear time.

The dominating factor of the running time is the initialization of the query engine. However, after
initialization, creating groups can be carried out efficiently.

Furthermore, our experiments showed that the limiting factor for our solution is the memory con-
sumption of the incremental query engine. Given more memory, the solution is capable of transforming
larger models as well.

3.7 IMDb model

In the given time range and memory constraints, the transformation of the IMDb model could only
generate the couples and 3-cliques for the smallest instance model. Finding the couples took 3 minutes,
while finding 3-cliques took 6. However, in case of a live and evolving model, our solution is capable of
incrementally running the transformation which in practice results in near instantaneous response time.

3.8 Transformation Correctness and Reproducibility

The transformation runs correctly for the provided test cases on SHARE1, and the source code is also
available in a Git repository2. The results of the transformations were spot-checked for both synthetic
and IMDb models.

3.9 Tool Support for Debugging and Refactoring

As the transformation is written in two languages, debugging and refactoring is dependent on the tooling
for these languages and the capabilities of the query engine.

1http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_TTC14_
64bit_TTC14-EIQ-imdb.vdi

2Homepage: https://git.inf.mit.bme.hu/w?p=projects/viatra/ttc14-eiq.git (use the anonymous user with
no password), clone URI: https://anonymous@git.inf.mit.bme.hu/r/projects/viatra/ttc14-eiq.git

http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_TTC14_64bit_TTC14-EIQ-imdb.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_TTC14_64bit_TTC14-EIQ-imdb.vdi
https://git.inf.mit.bme.hu/w?p=projects/viatra/ttc14-eiq.git

8 Movie Database Case: An EMF-INCQUERY solution

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(s

)

Size (N)

Runtime of Transformation Tasks

Couples 3-Clique 4-Clique 5-Clique

Figure 4: Benchmark results.

Xtend and the EMF-INCQUERY pattern editors are based on Xtext, and while provide some refactor-
ing operations. Declarative EMF-INCQUERY graph patterns cannot be efficiently debugged at runtime.
However, smaller instance models can be loaded into the Query Explorer view, which is very handy to
the debug matches of the patterns. The engine controller code can be debugged and refactored as well, as
it is implemented in Java. Debug messages of the execution engine can be turned on, which prints useful
messages about rule firings and activations. Firings of the transformation operations can be debugged by
placing breakpoints in the Xtend code.

4 Conclusion

In this paper we have presented our implementation of the Movie Database Case. The solution is based
on EMF-INCQUERY which is used as a model query engine. Because its dedicated rule language is yet
to be implemented, the transformation rules are defined in Xtend.

The transformation is specified using declarative graph pattern queries over EMF models for rule
preconditions, and Xtend code which can be executed to obtain the desired effect of the rule.

G. Szárnyas et al. 9

References
[1] Apache.org (2014): Maven. http://maven.apache.org.
[2] Gábor Bergmann, Zoltán Ujhelyi, István Ráth & Dániel Varró (2011): A Graph Query Language for EMF

models. In: Theory and Practice of Model Transformations, Fourth International Conference, ICMT 2011,
Zurich, Lecture Notes in Computer Science 6707, Springer, pp. 167–182, doi:10.1007/978-3-642-21732-6_12.

[3] Eclipse.org (2014): EMF-IncQuery. http://eclipse.org/incquery/.
[4] Eclipse.org (2014): Tycho home. https://www.eclipse.org/tycho/.
[5] Eclipse.org (2014): Xtend – Modernized Java. https://www.eclipse.org/xtend/.
[6] Matthias Tichy Tassilo Horn, Christian Krause (2014): The TTC 2014 Movie Database Case. In: 7th Trans-

formation Tool Contest (TTC 2014), EPTCS.
[7] Dániel Varró & András Balogh (2007): The model transformation language of the {VIATRA2} framework.

Science of Computer Programming 68(3), pp. 214 – 234, doi:http://dx.doi.org/10.1016/j.scico.2007.05.004.
Available at http://www.sciencedirect.com/science/article/pii/S016764230700127X. Special
Issue on Model Transformation.

http://maven.apache.org
http://dx.doi.org/10.1007/978-3-642-21732-6_12
http://eclipse.org/incquery/
https://www.eclipse.org/tycho/
https://www.eclipse.org/xtend/
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2007.05.004
http://www.sciencedirect.com/science/article/pii/S016764230700127X

10 Movie Database Case: An EMF-INCQUERY solution

A Appendix – Movie Database Case Transformation Code

A.1 EMF-INCQUERY Graph Patterns

1 package hu.bme.mit.ttc.imdb.queries
2
3 import "http :// movies /1.0"
4
5
6 // Shorthand patterns
7 pattern personName(p, pName) {
8 Person.name(p, pName);
9 }

10
11 pattern cast(name , M) {
12 Movie.persons.name(M, name);
13 }
14
15 pattern commonMoviesOfCouple(c, m) {
16 Couple.commonMovies(c, m);
17 }
18
19 /**
20 * This pattern determines if a person is a member of a group.
21 */
22 pattern memberOfGroup(person , group) {
23 Couple.p1(group ,person);
24 } or {
25 Couple.p2(group ,person);
26 } or {
27 Clique.persons(group , person);
28 }
29
30 /**
31 * This pattern determines the size of a group.
32 */
33 pattern groupSize(group , S) {
34 Group(group);
35 S == count find memberOfGroup(_, group);
36 }
37
38 // Couple patterns
39 /**
40 * This pattern looks for two person names (p1name , p2name), who were in the cast of
41 * three different movies (M1, M2, M3).
42 * The names are ordered lexicographically in order to list the same pair only one
43 * (the match set contains only {(a1 , a2)} instead of {(a1 , a2), (a2, a1)}.
44 */
45 pattern personsToCouple(p1name , p2name) {
46 find cast(p1name , M1); find cast(p2name , M1);
47 find cast(p1name , M2); find cast(p2name , M2);
48 find cast(p1name , M3); find cast(p2name , M3);
49
50 M1 != M2; M2 != M3; M1 != M3;
51
52 check(p1name < p2name);
53 }
54
55 /**
56 * This pattern looks for the common movies of a couple.
57 * The couple is determined with the personsToCouple pattern.
58 */
59 pattern commonMoviesToCouple(p1name , p2name , m) {
60 find personsToCouple(p1name , p2name);

G. Szárnyas et al. 11

61
62 Person.movies(p1 , m);
63 Person.movies(p2 , m);
64 Person.name(p1,p1name);
65 Person.name(p2,p2name);
66
67 check(p1name < p2name);
68 }
69
70 /**
71 * Returns with the number of common movies of a couple.
72 */
73 pattern countOfCommonMoviesOfCouple(p1 , p2 , n) {
74 Couple.p1(c, p1);
75 Couple.p2(c, p2);
76 n == count find commonMoviesOfCouple(c, _m);
77 }
78
79 // Clique patterns
80 /**
81 * Similarly to the couple pattern , this pattern looks for 3-cliques.
82 */
83 pattern personsTo3Clique(P1, P2, P3) {
84 find cast(P1, M1); find cast(P2, M1); find cast(P3, M1);
85 find cast(P1, M2); find cast(P2, M2); find cast(P3, M2);
86 find cast(P1, M3); find cast(P2, M3); find cast(P3, M3);
87
88 M1 != M2; M2 != M3; M1 != M3;
89
90 check(P1 < P2); check(P2 < P3);
91 }
92
93 /**
94 * Similarly to the couple pattern , this pattern looks for 4-cliques.
95 */
96 pattern personsTo4Clique(P1, P2, P3, P4) {
97 find cast(P1, M1); find cast(P2, M1); find cast(P3, M1); find cast(P4, M1);
98 find cast(P1, M2); find cast(P2, M2); find cast(P3, M2); find cast(P4, M2);
99 find cast(P1, M3); find cast(P2, M3); find cast(P3, M3); find cast(P4, M3);

100
101 M1 != M2; M2 != M3; M1 != M3;
102
103 check(P1 < P2); check(P2 < P3); check(P3 < P4);
104 }
105
106 /**
107 * Similarly to the couple pattern , this pattern looks for 5-cliques.
108 */
109 pattern personsTo5Clique(P1, P2, P3, P4, P5) {
110 find cast(P1, M1); find cast(P2, M1); find cast(P3, M1); find cast(P4, M1); find cast(

P5, M1);
111 find cast(P1, M2); find cast(P2, M2); find cast(P3, M2); find cast(P4, M2); find cast(

P5, M2);
112 find cast(P1, M3); find cast(P2, M3); find cast(P3, M3); find cast(P4, M3); find cast(

P5, M3);
113
114 M1 != M2; M2 != M3; M1 != M3;
115
116 check(P1 < P2); check(P2 < P3); check(P3 < P4); check(P4 < P5);
117 }

A.2 Xtend Code

A.2.1 Generator code

12 Movie Database Case: An EMF-INCQUERY solution

1 class Generator {
2

3 public Resource r
4

5 extension MoviesFactory = MoviesFactory.eINSTANCE
6

7 def generate(int N) {
8 createExample(N);
9 }
10

11 def createExample(int N) {
12 (0 .. N - 1).forEach[createTest(it)]
13 }
14

15 def createTest(int n) {
16 createPositive(n)
17 createNegative(n)
18 }
19

20 def createPositive(int n) {
21 val movies = newArrayList ()
22 (0 .. 4).forEach[movies += createMovie (10 * n + it)]
23

24 val a = createActor("a" + (10 * n))
25 val b = createActor("a" + (10 * n + 1))
26 val c = createActor("a" + (10 * n + 2))
27 val d = createActress("a" + (10 * n + 3))
28 val e = createActress("a" + (10 * n + 4))
29

30 val actors = #[a, b, c, d, e]
31 val firstTwo = #[a, b]
32 val lastTwo = #[d, e]
33

34 movies.get(0).persons += firstTwo;
35 (1 .. 3).forEach[movies.get(it).persons += actors]
36 movies.get(4).persons += lastTwo
37

38 r.contents += actors
39 r.contents += movies
40 }
41

42 def createNegative(int n) {
43 val movies = newArrayList ()
44 (5 .. 9).forEach[movies += createMovie (10 * n + it)]
45

46 val a = createActor("a" + (10 * n + 5))
47 val b = createActor("a" + (10 * n + 6))
48 val c = createActress("a" + (10 * n + 7))
49 val d = createActress("a" + (10 * n + 8))
50 val e = createActress("a" + (10 * n + 9))
51

52 val actors = #[a, b, c, d, e]
53 movies.get(0).persons += #[a, b]
54 movies.get(1).persons += #[a, b, c]
55 movies.get(2).persons += #[b, c, d]
56 movies.get(3).persons += #[c, d, e]
57 movies.get(4).persons += #[d, e]
58

59 r.contents += actors
60 r.contents += movies
61 }
62

63 def createMovie(int rating) {
64 val movie = createMovie
65 movie.rating = rating

G. Szárnyas et al. 13

66 movie
67 }
68

69 def createActor(String name) {
70 val actor = createActor
71 actor.name = name
72 actor
73 }
74

75 def createActress(String name) {
76 val actress = createActress
77 actress.name = name
78 actress
79 }
80

81 }

A.2.2 Transformation code

1 class Transformation {
2

3 /**
4 * Initialize the transformation processor on a resource.
5 * The runtime of the transformation steps are logged.
6 * @param r The target resource of the transformation.
7 * @param bmr The benchmark logger.
8 */
9 new (Resource r, BenchmarkResults bmr) {
10 this.r = r;
11 this.bmr = bmr;
12 this.root = r.contents.get(0) as Root
13 }
14

15 protected val BenchmarkResults bmr;
16 protected Resource r
17

18 ////// Resources Management
19 protected val Root root;
20 /**
21 * Helper function to add elements to the target resource.
22 * @param
23 */
24 def addElementToResource(ContainedElement containedElement) {
25 root.children.add(containedElement)
26 }
27 def addElementsToResource(Collection <? extends ContainedElement > containedElements) {
28 root.children.addAll(containedElements)
29 }
30 def getElementsFromResource () {
31 root.children
32 }
33 // //////////////////////////
34

35 extension MoviesFactory = MoviesFactory.eINSTANCE
36 extension Imdb = Imdb.instance
37

38 public def createCouples () {
39 val engine = AdvancedIncQueryEngine.createUnmanagedEngine(r)
40 val coupleMatcher = engine.personsToCouple
41 val commonMoviesMatcher = engine.commonMoviesToCouple
42 val personNameMatcher = engine.personName
43

44 val newCouples = new LinkedList <Couple >
45 coupleMatcher.forEachMatch [
46 val couple = createCouple ()

14 Movie Database Case: An EMF-INCQUERY solution

47 val p1 = personNameMatcher.getAllValuesOfp(p1name).head
48 val p2 = personNameMatcher.getAllValuesOfp(p2name).head
49 couple.setP1(p1)
50 couple.setP2(p2)
51 val commonMovies = commonMoviesMatcher.getAllValuesOfm(p1name , p2name)
52 couple.commonMovies.addAll(commonMovies)
53

54 newCouples += couple
55]
56

57 println("# of couples = " + newCouples.size)
58 engine.dispose
59 addElementsToResource(newCouples);
60 }
61

62 def topGroupByRating(int size) {
63 println("Top -15 by Average Rating")
64 println("========================")
65 val n = 15;
66

67 val engine = IncQueryEngine.on(r)
68 val coupleWithRatingMatcher = engine.groupSize
69 val rankedCouples = coupleWithRatingMatcher.getAllValuesOfgroup(size).sort(
70 new GroupAVGComparator)
71

72 printCouples(n, rankedCouples)
73 }
74

75 def topGroupByCommonMovies(int size) {
76 println("Top -15 by Number of Common Movies")
77 println("=================================")
78

79 val n = 15;
80 val engine = IncQueryEngine.on(r)
81 val coupleWithRatingMatcher = engine.groupSize
82

83 val rankedCouples = coupleWithRatingMatcher.getAllValuesOfgroup(size).sort(
84 new GroupSizeComparator
85)
86 printCouples(n, rankedCouples)
87 }
88

89 def printCouples(int n, List <Group > rankedCouples) {
90 (0 .. n - 1).forEach [
91 if(it < rankedCouples.size) {
92 val c = rankedCouples.get(it);
93 println(c.printGroup(it))
94 }
95]
96 }
97

98 def printGroup(Group group , int lineNumber) {
99 if(group instanceof Couple) {

100 val couple = group as Couple
101 return ’’’«lineNumber». Couple avgRating «group.avgRating», «group.commonMovies.

size» movies («couple.p1.name»; «couple.p2.name»)’’’
102 }
103 else {
104 val clique = group as Clique
105 return ’’’«lineNumber». «clique.persons.size»-Clique avgRating «group.avgRating», «

group.commonMovies.size» movies («
106 FOR person : clique.persons SEPARATOR ", "»«person.name»«ENDFOR»)’’’
107 }
108 asd1 asd2
109 }

G. Szárnyas et al. 15

110

111 def calculateAvgRatings () {
112 getElementsFromResource.filter(typeof(Group)).forEach[x|calculateAvgRating(x.

commonMovies , x)]
113 }
114

115 protected def calculateAvgRating(Collection <Movie > commonMovies , Group group) {
116 var sumRating = 0.0
117

118 for (m : commonMovies) {
119 sumRating = sumRating + m.rating
120 }
121 val n = commonMovies.size
122 group.avgRating = sumRating / n
123 }
124

125 public def createCliques(int cliques) {
126 val engine = AdvancedIncQueryEngine.createUnmanagedEngine(r)
127 val personMatcher = getPersonName(engine)
128 var Collection <Clique > newCliques
129

130 if(cliques == 3) {
131 val clique3 = getPersonsTo3Clique(engine)
132

133 newCliques = clique3.allMatches.map[x|generateClique(
134 personMatcher.getOneArbitraryMatch(null ,x.p1).p,
135 personMatcher.getOneArbitraryMatch(null ,x.p2).p,
136 personMatcher.getOneArbitraryMatch(null ,x.p3).p)]. toList;
137 }
138 else if(cliques == 4) {
139 val clique4 = getPersonsTo4Clique(engine)
140

141 newCliques = clique4.allMatches.map[x|generateClique(
142 personMatcher.getOneArbitraryMatch(null ,x.p1).p,
143 personMatcher.getOneArbitraryMatch(null ,x.p2).p,
144 personMatcher.getOneArbitraryMatch(null ,x.p3).p,
145 personMatcher.getOneArbitraryMatch(null ,x.p4).p)]. toList;
146 }
147 else if(cliques == 5) {
148 val clique5 = getPersonsTo5Clique(engine)
149 newCliques = clique5.allMatches.map[x|generateClique(
150 personMatcher.getOneArbitraryMatch(null ,x.p1).p,
151 personMatcher.getOneArbitraryMatch(null ,x.p2).p,
152 personMatcher.getOneArbitraryMatch(null ,x.p3).p,
153 personMatcher.getOneArbitraryMatch(null ,x.p4).p,
154 personMatcher.getOneArbitraryMatch(null ,x.p5).p)]. toList;
155 }
156

157 println("# of "+cliques+"-cliques = " + newCliques.size)
158

159 engine.dispose
160 newCliques.forEach[x|x.commonMovies.addAll(x.collectCommonMovies)]
161 addElementsToResource(newCliques);
162 }
163

164 protected def generateClique(Person ... persons) {
165 val c = createClique
166 c.persons += persons
167 return c
168 }
169

170 protected def collectCommonMovies(Clique clique) {
171 var Set <Movie > commonMovies = null;
172 for(personMovies : clique.persons.map[movies]) {
173 if(commonMovies == null) {

16 Movie Database Case: An EMF-INCQUERY solution

174 commonMovies = personMovies.toSet;
175 }
176 else {
177 commonMovies.retainAll(personMovies)
178 }
179 }
180 return commonMovies
181 }
182 }

A.2.3 Comparator code for top-15

1 class GroupSizeComparator implements Comparator <Group >{
2

3 override compare(Group arg0 , Group arg1) {
4 if (arg0.commonMovies.size < arg1.commonMovies.size) {return 1}
5 else if (arg0.commonMovies.size == arg1.commonMovies.size) {return 0}
6 else return -1;
7 }
8 }
9

10 class GroupAVGComparator implements Comparator <Group >{
11

12 override compare(Group arg0 , Group arg1) {
13 if(arg0.avgRating <arg1.avgRating) {return 1;}
14 else if (arg0.avgRating == arg1.avgRating) {return 0;}
15 else return -1;
16 }
17 }

	Introduction
	Architecture Overview
	Solution
	Specification
	Patterns and Transformations
	Task 1: Generating Test Data
	Task 2: Finding Couples
	Task 3: Computing Average Rankings
	Extension Task 1: Compute Top-15 Couples
	Extension Task 2: Finding Cliques
	General solution for n-cliques.

	Extension Task 3: Compute Average Rankings for Cliques
	Extension Task 4: Compute Top-15 Cliques

	Optimizations
	Build Automation
	Benchmark Results
	Synthetic model
	IMDb model
	Transformation Correctness and Reproducibility
	Tool Support for Debugging and Refactoring

	Conclusion
	Appendix – Movie Database Case Transformation Code
	EMF-IncQuery Graph Patterns
	Xtend Code
	Generator code
	Transformation code
	Comparator code for top-15

