Solving the Movie Database Case with QVTo

Christopher Gerking and Christian Heinzemann

Software Engineering Group, Heinz Nixdorf Institute, University of Paderborn,
Zukunftsmeile 1, 33102 Paderborn, Germany
{christopher.gerking|c.heinzemann}@uni-paderborn.de

Abstract. This paper proposes a solution to the IMDb movie database
case of the Transformation Tool Contest 2014. Our solution is based
on the Eclipse implementation of the OMG standard QVTo. We imple-
mented all of the tasks including all of the extension tasks. Our bench-
mark results show that QVTo is able to handle models with a few thou-
sand objects.

Keywords: Transformation Tool Contest, Model Transformation, QVT
Operational

1 Introduction

This paper proposes a solution to the movie database case [4] of the Transfor-
mation Tool Contest 2014. The objective of the movie database case is deriving
a set of performance results that indicate the ability of model transformation
languages of processing large models with millions of objects. The case study is
based on the IMDb movie database [1] that stores information about movies,
actors, actresses, and movie ratings.

We use QVT Operational Mappings (QVTo, [5]) for implementing the differ-
ent parts of the movie database case. QVTo is a textual, imperative model trans-
formation language that is standardized by the OMG. It is based on MOF [6]
and OCL [7]. Therefore, it natively supports metamodels specified in EMF [8]
such as the provided IMDB metamodel. In particular, we rely on the Eclipse
implementation of QVTo that is part of the Eclipse Modeling tools’.

The Eclipse implementation of the QVTo standard is open source and already
widely used in open-source and academical projects. It is used, for example,
within the Graphical Modeling Framework (GMF?) and in the Papyrus project®.
Recently, it has been used for translating software design models to verification
models [2] and for generating operational behavior specification out of declarative
ones [3].

In our implementation, we created seven transformations for solving the
movie database cases. We implemented the three main tasks including all of

! nttp://projects.eclipse.org/projects/modeling.mmt .qvt-oml
2 http://eclipse.org/gmf-tooling/
3 https://www.eclipse.org/papyrus/

http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://eclipse.org/gmf-tooling/
https://www.eclipse.org/papyrus/

II

the extensions tasks. Our implementation demonstrates that QVTo enables a
concise specification of the solutions. Five out of seven tasks require less than
30 lines of code. Our benchmark results show that the Eclipse implementation
of QVTo is currently able to handle input models with a few thousand objects
in reasonable time.

The paper is structured as follows. We first briefly review the movie database
case in Section 2 and QVTo in Section 3. Thereafter, Section 4 describes our so-
lution that we implemented in QVTo. We provide benchmark results concerning
runtime of our transformation in Section 5 before concluding the paper in Sec-
tion 6.

2 The Movie Database Case

The movie database case is based on the metamodel shown in Figure 1. It pro-
vides classes for Movies, Actors, and Actresses while the latter two inherit from
Person. In addition, the metamodel specifies Groups which may be Couples or
Cliques. A clique consists of at least n persons that played together in at least 3
movies while n > 3. A couple is a clique with n = 2, i.e., two persons who played
together in at least 3 movies.

0..*
<<enumeration>> H Movie -
2 MovieType o title : EString commonMovies
= MOVIE = rating : EDouble
=TV o year : Eint H Group
= VIDEO = type : MovieTypi = avgRating : EDouble¢
= VIDEOGAME
movies| 0..*
*
persons | O.. ol 0.1
E Person H Couple
= name : EString
p2 0..1 H Clique
0..*
persons
H Actor H Actress

Fig. 1. Metamodel for the Movie Database Case [4]

The case study requires to generate a synthetic set of test data based on
the metamodel shown in Figure 1. In addition, it requires to provide a number
of queries for computing couples and cliques including average movie ratings
for them. Furthermore, the computed couples and cliques need to be sorted for

111

obtaining the top 15 with respect to the average movie ratings of their common
movies and the number of common movies [4].

3 QVT Operational

QVT Operational (QVTo, [5]) is a textual, imperative language for defining uni-
directional model-to-model transformations. The current Eclipse implementation
of QVTo natively supports the specification of model transformations based on
EMF metamodels such as the metamodel shown in Figure 1. Since QVTo is an
imperative extension of the OCL [7], the Eclipse implementation also provides
access to numerous OCL operations that enable to build collections (e.g., sets)
of objects.

A QVTo transformation defines one or more input metamodels and one or
more output metamodels. Then, the transformation transforms instances of the
input metamodels to instances of the output metamodels. By defining meta-
models as inout, QVTo enables inplace transformations where the input model
is modified. Each transformation has a name and a unique entry point de-
noted by main(). Using so called configuration properties, QVTo supports the
parametrization of transformations by means of primitive data types.

The transformation itself consists of a set of mappings, queries, helpers, and
constructors. A mapping translates an object of an input model to an object of
an output model. Queries derive information from one of the models without
modifying it. They may be defined for the transformation itself or for one of the
classes of the input or output metamodels. A helper may be used to perform aux-
iliary computations but also for creating additional objects in the output model.
Finally, constructors enable to provide explicitly constructors with parameters
for classes in the output metamodel.

4 Solution

In the following, we present our solutions to the tasks that were set as part of
the IMDb database case. For each of the tasks, we provide QVTo model trans-
formation operating on instances of the IMDb metamodel. All design decisions
made were influenced by the intention to reuse built-in QVTo functionality as
much as possible. Thus, by reusing native language features instead of manual
implementation, we focus on keeping the solutions concise with respect to the
size of the transformation scripts.

4.1 Task 1: Generating Test Data

For the generation of test data, we developed a QVTo transformation with a
single model parameter that corresponds to the IMDb model to be created.
The model parameter named imdb is declared as out in order to reflect the
circumstance that the transformation generates a new model instead of reading
or manipulating an existing one:

v

transformation Taskl(out imdb : IMDb);

We declare the transformation parameter N using a QVTo configuration
property. Thus, a desired value for N may be specified along with the invocation
of the transformation:

configuration property N : Integer;

The implementation of our transformation reflects the structure of the given
Henshin specification in terms of imperative operation calls. Thus, the Henshin
units createExample, createTest, createPositive, and createNegative correspond
to dedicated helper operations parametrized by means of integer values. The
operations createPositive and createNegative generate the actual test data.
For this purpose, they invoke dedicated constructor operations as another im-
perative operation type introduced by QVTo. Our solution specifies constructors
for the types Movie, Actor, and Actress which enable the instantiation of the
required model elements. After the instantiation, we assign the appropriate set
of movies to the movies feature of each created person. In the listing below,
we provide the entire implementation of the createPositive operation as an
example:

helper createPositive(n : Integer) {

var moviel = new Movie(10xn);
var movie2 = new Movie(10%n + 1);
var movie3 = new Movie(10xn + 2);
var movie4 = new Movie(10xn + 3);

()

var movieb = new Movie(10xn + 4

)

” 2

var a Person = new Actor(”a” + (10*n).toString());

var b Person = new Actor(”a” + (10xn + 1).toString());
var c Person = new Actor(”a” + (10*xn + 2).toString ());
var d : Person = new Actress(”a” + (10xn + 3).toString ());
var e Person = new Actress(”a” + (10*xn + 4).toString ());
a.movies += Set{ moviel, movie2, movie3, movied };
b.movies += Set{ moviel, movie2, movie3, movied };
c.movies += Set{ movie2, movie3, movied };

d.movies += Set{ movie2, movied, movied, movieb };
e.movies += Set{ movie2, movied, movied, movie5 };

return null;

4.2 Task 2: Finding Couples

Unlike our solution described in Section 4.1, the imdb model parameter to the
transformation for this task is declared as inout:

transformation Task2(inout imdb : IMDb);

This declaration implies that the transformation accepts an existing input
model, and will output the same model after manipulating in in a certain sense.
The required manipulation for this task is the addition of Couple elements re-
ferring to all pairs of persons who played together in at least three movies. In
order to detect the set of couples, our approach is to traverse all potential pairs
by means of a for-loop with two iterator variables, iterating over all pairs of
persons. QVTo allows to obtain the set of all persons by means of its built-in
objects0fType operation:

var persons = imdb.objectsOfType (Person);

For a given model, this operation retrieves all existing element instances of
a certain type (Person in our case). While iterating over all potential pairs of
persons, we create a couple element for every unique pair that is a valid couple,
i.e., has at least three common movies. Thus, we need to ensure uniqueness and
validity of the couples created.

Uniqueness implies that no couple should be created when another couple
referring to the same two persons already exists (regardless of the order in which
the two persons are referred). To achieve uniqueness, we exploit one of the basic
language features of QVTo in terms of operational mappings. An operational
mapping is an imperative operation that behaves according to a partial math-
ematical function, i.e., maps each input to at most one output. Thus, the first
invocation of a mapping with a certain input will potentially create the appro-
priate result. However, invoking a mapping again with an equal input will not
produce another result, but return the cached result of the prior invocation.

Our solution comprises an operational mapping named createCouple that
generates a couple for every distinct input pair with at least three common
movies. To exploit the mapping behavior for the creation of unique couples, we
need to ensure that every two pairs referring to the same persons are regarded
as equal. Hence, before invoking the operational mapping createCouple, we
convert the two persons into an OCL Set that serves as the actual mapping
input:

mapping createCouple (persons : Set(Person)) : Couple

The equality behavior of the OCL Set type ensures that two sets compare
equal if they refer to the same elements, regardless of the internal element or-
dering. Thus, when invoking the createCouple mapping again for the same two
persons ordered differently, the conversion to a set ensures equality to the input
mapped before. Therefore, instead of creating a new couple, the mapping will
just return the existing couple, ensuring the required uniqueness of all couples
created.

The remaining challenge is to detect the set of couples which are valid in the
sense of this task, i.e., comprise at least three common movies. Checking this
precondition for a given pair of persons requires to obtain the set of common
movies first. We achieve this by intersecting the two sets of movies that each of

VI

the persons played in. Again, we exploit built-in QVTo functionality in terms of
the intersection operation defined for OCL’s OrderedSet type:

commonMovies := pl.movies—>intersection (p2.movies);

The actual evaluation of the number of common movies is carried out inside
a dedicated query operation named isValidCouple, which obtains the movie
intersection as described and returns true if and only if the number of common
movies is at least three. In order to make this number mandatory for any valid
couple, we invoke the isValidCouple operation from inside the when clause of
the createCouple mapping. This causes the mapping to execute (and generate
a new result) only if the query return true, i.e., the input pair of persons has at
least three common movies.

mapping createCouple (persons : Set(Person)) : Couple

et (
when {persons—>isValidCouple ()}

4.3 Task 3: Computing Average Rankings

Similar to the transformation described in Section 4.2, our solution to this task
is based on a transformation with a single inout model parameter. The task is
to compute and store the average rating of all common movies for each existing
couple. Since our transformation is independent from the solution to Task 2, we
need to obtain the set of existing couples first. Again, we carry out this task using
QVTo’s built-in object0fType operation to obtain the set of Couple elements
inside the given model:

var couples = imdb.objectsOfType (Couple);

Subsequently, we traverse the obtained set of couples by means of an imper-
ative forEach loop. During each iteration, we compute and store the average
rating for one of the detected couples. To obtain the sum of ratings for the com-
mon movies, we use the sum operation defined for an arbitrary OCL collection.
Given the sum of ratings, we compute the arithmetic mean by simply dividing
the sum by the number of movies, assigning the result to the avgRating feature
of the respective couple.

couples —>forEach (couple) {
couple.avgRating :=
couple .commonMovies. rating —>sum () /
couple .commonMovies—>size ();

}s

4.4 Extension Task 1: Compute Top-15 Couples

Unlike the prior tasks, this task is not about model transformation as such,
but rather requires to query information from a given model. In particular,
the challenge is to query the top-15 couple elements according to their average

VII

ratings and their number of common movies. Hence, our QVTo-based solution
relies on an imdb model parameter declared as in only:

transformation ExtensionTaskl (in imdb : IMDb);

After retrieving the existing Couple elements using QVTo’s objects0fType
operation, we sort the couples as required. We carry out the sorting by means
of the predefined sortedBy operation available on OCL collections, using the
avgRating feature and respectively the size of the commonMovies feature as the
sorting criteria. The listing below illustrates the sorting by average rating:

var sorted = couples—>sortedBy(—avgRating);

Based on the sorted sequence of couples, we iterate over first 15 elements and
print out the desired information about each couple using QVTo’s log operation.

4.5 Extension Task 2: Finding Cliques

Our solution to this extension task comprises a QVTo configuration property
named n that represents the desired size of the cliques to be obtained:

configuration property n : Integer;

The major challenge in comparison to Task 2 is to retrieve the sets of persons
with the desired size n in order to check each of these sets for being a valid clique
with at least three common movies. Since 7 is not fixed to a certain value (such
as two for Task 2), it is not possible to solve this problem using a fixed number
of iterator variables.

Instead, we construct the required sets of n persons using an incremental
approach. Starting with the empty set, we iterate over every person in the input
imdb model and create new sets by adding the current person to each of the sets
already created before. We avoid the construction of duplicates by storing the
obtained sets of persons inside another OCL Set, which does not allow duplicates
per default. We illustrate the declaration of this set below, initializing it by means
of an empty set of persons:

var sets : Set(Set(Person)) = Set{Set{}};

In order to save runtime, we evaluate any constructed set for being a valid
clique on the fly. This means that we discard every constructed set if the number
of common movies goes below three, because no valid extension to a clique with
three or more common movies exists for such a set. In addition, our solution
does not construct sets with more than n persons, which would be an evitable
overhead. After constructing all clique sets consisting of n persons with at least
three common movies, we create an appropriate Clique instance for each of
these sets.

VIII

4.6 Extension Task 3: Computing Average Rankings for Cliques

Our solution to this extension task is almost identical to the approach described
in Section 4.3. The only difference is that we obtain the set of Clique elements
instead of Couple elements, before computing and storing the average rating for
each of these as described before.

4.7 Extension Task 4: Compute Top-15 Cliques

The contributed solution for this task is only an adjustment of the approach
described in Section 4.4. The difference is that we obtain the set of Clique rather
than Couple elements, and slightly extended the printing routine for cliques in
comparison to the one for used couples.

5 Evaluation and Benchmarks

In this section, we evaluate and discuss the applicability of QVTo to complex
transformation tasks such as the IMDb movie database case. In particular, we
are interested in how far QVTo’s conciseness relates to its runtime performance.
In Table 1, we present the size of our solutions in terms of the underlying source
lines of code, as well as the measured transformation runtime from invocation
to termination. The performance testing was carried out on a quad-core 2,2
GHz machine with 8 GB of main memory. Our measurements are based on the
parameter values N=100 for the size of the input data, and n=2 for the size of
cliques to be detected.

Table 1. Evaluation of Conciseness and Performance

[Task [LOC|Runtime]|
Task 1 60 357ms
Task 2 23 2m 17s
Task 3 8 162ms

Extension Task 1| 27 142ms
Extension Task 2| 45 2m 57s
Extension Task 3| 8 181ms
Extension Task 4| 36 294ms

Obviously, QVTo’s conciseness (reflected by the small number of source code
lines) is out of proportion to the measured runtime. In case of complex challenges
such as Task 2 oder Extension Task 2, QVTo did not provide an acceptable trans-
formation runtime. Focusing on these critical tasks in particular, the detected
performance limitations are traceable to QVTo’s missing native support for the
construction of subsets of model elements (which is required to cover all potential
cliques). Compared to QVTo as an imperative language, declarative approaches

IX

might achieve considerable runtime improvements by obtaining all possible sets
using nondeterministic matching techniques.

As another limitation, QVTo as a dedicated model transformation language
does not provide a broader scope of actions when it comes to performance tweaks.
In contrast, the usage of general-purpose languages such as Java gives rise to spe-
cific implementational variations that could drastically improve the performance.

6 Conclusions

This paper presents a solution to the movie database case of the transformation
tool contest 2014 based on QVTo. Our implementation relies on the open-source
Eclipse implementation of QVTo. Our results show that QVTo enables for a
concise specification of the required queries. However, QVTo is only able to
handle test models based on IMBD with a few thousand objects in reasonable
time, but not test models with a million objects.

Based on the aforementioned experiences made with QVTo, we propose fu-
ture work in two different directions. On the one hand, it might be a promising
effort to improve the QVTo interpreter towards more efficient implementations
of the built-in language features. On the other hand, QVTo’s lack of native
support for the construction of subsets of model element might be subject to
further investigation as well. Extending the QVT specification [5] by new lan-
guage features is a reasonable option, provided that the added features enable
more efficient implementations or do even lead to further improvements in terms
of code conciseness and readability.

References

1. Internet movie database (IMDB). Alternative interfaces: http://www.imdb.com/
interfaces

2. Gerking, C.: Transparent UPPAAL-based Verifcation of MECHATRONICUML Models.
Master’s thesis, University of Paderborn (May 2013)

3. Heinzemann, C., Becker, S.: Executing reconfigurations in hierarchical component
architectures. In: Proceedings of the 16th international ACM Sigsoft symposium on
Component based software engineering. pp. 3-12. CBSE 13, ACM, New York, NY,
USA (Jun 2013)

4. Horn, T., Krause, C., Tichy, M.: The TTC 2014 movie database case. In: Transfor-
mation Tool Contest. TTC’14 (2014)

5. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/-
Transformation, v1.1 (Jan 2011), http://www.omg.org/spec/QVT/1.1/, document
formal/2011-01-01

6. Object Management Group: OMG Meta Object Facility (MOF) Core Specification
(Jun 2011), http://www.omg.org/spec/MOF/2.4.1/, document formal/2013-06-01

7. Object Management Group: Object Constraint Language (OCL) 2.3.1 (Jan 2012),
http://www.omg.org/spec/0CL/2.3.1/, document formal/2012-01-01

8. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. The Eclipse Series, Addison-Wesley, 2nd edn. (Dec 2008)

http://www.imdb.com/interfaces
http://www.imdb.com/interfaces
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/

	Solving the Movie Database Case with QVTo

