FIXML to Java, C# and C++ Transformationswith

Dan Li, Danning Li Xiaoshan Li
Guizhou Academy of Sciences, Guiyang, China Faculty of Science and Technology, University of Macau,n@hi
Volker Stolz

Department of Informatics, University of Oslo, Norway

QVTR-XSLT is a tool supporting the design and execution ef gnaphical notation of QVT Rela-
tion. In this paper, we present a solution to the "FIXML to daC# and C++" case study of the
Transformation Tool Contest (TTC) 2014 using the QVTR-X3b0dl.

1 Introduction

The "FIXML to Java, C# and C++" case study of the Transfororafiool Contest (TTC) 2014 addresses
the problem of automatically synthesizing program codenffmancial messages expressed in FIX (Fi-
nancial Information eXchange) format. The problem can lo&dm down into three tasks: 1) generating
FIX model from FIX text file, 2) producing model of program tarage from the FIX model, and 3) con-

verting the program model to program code of Java, C# or Ca+this paper, the transformation tasks
are tackled with QVTR-XSLTILI1], a tool that supports editiaigd execution of the graphical notation of
QVT Relations (QVT-R) languagél[3].

As part of the model transformation standard proposed bythiect Management Group (OMG),
QVT-R is a high-level, declarative transformation langeiadts graphical notation provides a concise,
intuitive, and yet powerful way to define model transformas. In QVT-R, a transformation is defined
as a set ofelations(rules) between source and target metamodels, where @netgtecifies how two
object diagrams, calledomain patternsrelate to each other. Optionally, a relation may have a pair
of when andwhereclauses specified with an extended subset of Object Camtstranguage (OCL)
to define the pre- and postconditions of the relation, rasmdyg. A transformation may also include
gueriesandfunctions Transformations are driven by a single, designated teg-kelation.

QVTR-XSLT tool supports the graphical notation of QVT-R a&héd execution of a subset of QVT-
R by means of XSLT[I4]. The tool supports unidirectional rinaremental enforcement model-to-
model transformations of QVT-R. Features supported irelwensformation inheritance through rule
overriding, traceability of transformation executionsultiple input and output models, and in-place
transformations. In addition, we extend QVT-R with additibtransformation parameter, conditional
relation call and graphical model quefy [2]. The QVTR-XSbbkprovides agraphical editorin which
metamodels and transformations can be specified using diphigal syntax, and eode generatothat
automatically generates executable XSLT stylesheethotransformations. Aransformation runner
is also developed to execute a single or a chain of genera®d ¥ansformations by invoking a Saxon
XSLT processor. It can display the execution time and geedhe execution trace if required.

The rest of the paper is structured as follows: Sedflon ®dhices the design of a solution for the
case study. We discuss the experimental result and evatuattithe solution against the criteria given in
the case specification in Sectidn 3.

TTC 2014 © Dan Li, Danning Li, Xiaoshan Li & Volker Stolz

2 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

2 Solution design

ERE IR LtV TR et FiXmadel [oomodet | [L Model | [HimiMetablodel |
:] FIxmodel allet dllodel» maodel |“$ el angllag: odel m :ﬂ odel
; FIXtoD0 «Transformation» ., \ / metamodels

E}(T] HemlMetaModel elfetallodel» e S N VU F
(=1 MetaModels : " .. ; models
l:] LanguageModel <Metalodel - 3 K
d 00model «MetaModel» : hN ;
H ‘ \ —_— ’
Program
F~A Code
" & TextToFIX «Transformation»

Program
E UML Standard Profile [UML Stany | | i; ___

" r@J 00toLang «Transformation»
B & Sort0D «Transformatiomws ‘ FIX Text F:IX WModel ‘

&

Model
E EMFXMI [QVTR_Profile.mdzip] transformations
BE-ER QVIR [QVTR Profile. mdzip]
""" @ Code engineering sets

TextToFIX

[] FIXto OO 00toLang U Sort00

- %

Figure 1: Solution overview. Figure 2: Overall transforioatprocess.

Using the graphical editor of QVTR-XSLT, the solution foretbase study is designed as QVT-R
transformation modeFiXtoLangwhose outline is shown in Fi@l 1. It consists of 4 metamodats 4
transformations. Among the metamoddis{modelspecifies the structures of both FIX text model and
FIX model, OOmodeldefines the abstract model for the OO program languageshamhdriguageModel
provides the concrete syntax features for each language.

To complete the tasks of the case study, transformatatToFIXreads a FIX text file and transforms
it to a FIX model (task 1, see Sectipnl?2.1), which is subsetiyueonverted into an abstract program
model by theFIXtoOO transformation (task 2, see Sectfonl2.2). In case of C++¢ldmses defined in
the program model need to be sorted to ensure a class isetkdlafore being called. Transformation
SortO0is dedicated to this purpose. For the next task, as QVTR-XiSliainly designed for model-
to-model transformations, the program model, along withlimguage concrete feature model, are first
transformed to program code represented as an HTML modektdmiorms to theHtmiMetaModelof
Fig.O. Then, a pre-defined XSLT stylesheet generates a f@atrfile of the program code from the
HTML model (see Sectioh2.3). This transformation procéss,various artifacts and their relation to
each other, are shown in FIg. 2.

2.1 FIX text to FI X moded transfor mation

FIXML
<<Relation>> ‘E
T FIXtoFIX
ABSNod i {where=nds=node(); NodeToNode(nds,t);}
ode)
XMLNode N 0. {isTopLevel}
name : String +subnodes
<<Domain>> o <<Domain>>
+attributes|0..* M‘ k - M

XMLAttribute ABSAttribute

name : String [
value : String

Figure 3: FIX metamodel. Figure 4: Top relatiBrXtoFIX.

Dan Li, Danning Li, Xiaoshan Li & Volker Stolz 3

The very first transformatiofmextToFIXtakes as input an XML text file and outputs a model of FIX
format. As shown in Figld3, we define a single metamdéa&modelfor both the source and target
models. QVTR-XSLT uses simple UML class diagrams to defineamedels, and requires that a model
has a unique root element, such as EeML shown in the Fig[13. In the metamodel, two elements,
ABSNodeand ABSAttribute specify the structure of the source text model. Their dabses XMLNode
andXMLAttribute defines the metamodel of the target FIX model. Slightlyedéht from the metamodel
given in the case specification, we usaneproperty instead ofagto specify the tag of a FIX node.

The transformation itself is simple and straightforward. starts from the top relatioiIXtoFIX
(Fig.[), which constructs the root element of the target @hdd itswhereclause, functiomode()is used
to obtain all direct subnodes owned by the root of the sourcgain and another relatiddodeToNodés
invoked to subsequently map these subnodes. The mappingsibyone-to-one.

2.2 FIX model to program model transformation

Package
AttToProperty
{where=regexp="[-+]?[0-9]*\.[0-9]+";

+ype S OOElement tp=if matches(v,regexp) then ‘Double’ else *String” endif;}
name : String
<<Domain>> <<Domain>>
: XMLNode : Class
Property =g ===
o o attributes - L
<<enumeration>> att : XMLAttribute_ : Primitive
imiti a— name = "nm"
Object t Prlr.n-ll-tlve : Type nalmejll nm type < "tp"
order : String V};ﬁﬁé : é?rieng gg'l?l%e YD S 1Y value = "v"
Figure 5: Metamodel of program model. Figure 6: RelatioiToProperty

Fig.[illustrates the metamodel of the program model, wiietves as the target metamodel of the
transformationFIXtoOO. The three programming languages share the same abstrdak slefinitions.
In the metamodel, we define a root elemeatkagethat contains a set @flasses A class own$roperties
which could be either oPrimitive type, such astring and Doublg or Object of class type. Therder
property inObjectelements indicates the order of a object if there are maltgtljects with the same
name.

The challenge of the transformation is that in the sourceehtbegtre may be multiple nodes with the
same tag name. These nodes are distributed throughout thel,rand each of them may have a different
set of subnodes. We have to search the whole model to collextcarrences of this node, union all of
their subnodes to obtain a largest set, and convert the et toroperties of corresponding class in the
target model. As multiple subnodes with the same tag nameexiaywithin the same node, a function
is used to count the order of the subnodes, and store theiartierorder property of theDbjectelement.

We tackle the task of Extensions 3.1 of selecting apprapdata types in the relation that transforms
attribute nodes of the source model into primitive projgsrof target model, as shown in Hij. 6. A regular
expression is used to decide if the valus of typeDouble otherwise it is of typeString

4 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

2.3 Program model to program code transformation

This task comprises of three steps: 1) sorting class deidasaof the program model; 2) transforming
the program model into an HTML model of a particular programgmanguage; 3) rendering the HTML
model to a text file.

Sorting program model. For C++, the class declarations should be ordered so thetedaare always
declared before they are used. We design transform&woi®Ofor that purpose. It take®Omodelas
the source- and the target metamodel. The transformatiopta@ typical bubble sort algorithm. The
following function is defined for comparison of the pair ofaxknt classes:

function Compare(cl:Class, c2:Class) {
result=if c2.#0bject.type~includes(cl.name}then cl—union(c2) else c2—union(cl) endif;

}
where the input parametet is located before2 in the source model. However, if clasg does not

include any object of typel, we consider2is “smaller” thancl and swap them.

Program modd to HTML model. This transformationOOtoLangis extended fronSortOO so the
sorting function can be called if needed. It takes as inputognam model and a feature model, and
generates an HTML model for the code of the particular pnogning language. The feature model,
which conforms to the metamodednguageModeldefines the concrete syntax features for each language:
<LanguageDef>

<L angDef name="Java" this="this." String="String" Double="DoabiniVar="true" nul="null’ orderClass="false" .../>

<L angDef nhame="C#" this="this." String="string" Double="doublgliVar="true" nul="null’ orderClass="false" .../>

<L angDef name="C++" this="" String="string" Double="double" iné¥="false" nul="NIL’ orderClass="true" .../>
</LanguageDef>

In addition, a parameter file is used for the transformatiindicate which language is currently wanted
and the file name of the feature model:
<parameter Root>
<currentLang>C++<fcurrentLang>

<sourceTypedM odel name="languageSpec" file="LanguageDef.xml"/>
</parameter Root>

HTML model to plain text. A pre-defined simple XSLT stylesheet of about 20 lines of X8hie is
used to convert the HTML model of the program code into a e file.

3 Experimentsand Evaluation

Using the QVTR-XSLT code generator, we load the QVT-R tramsation model and generate for each
transformation a XSLT stylesheet. Some measures of theftnanations, such as lines of generated
XSLT code, development efforts, and model modularity, & in TabldL.
To execute the transformations, we first define the followbatch file to chain all the transforma-
tions:
<transformationChain>
<transformation><xsltfile>TextToFIX.xslt</xsltfile>&ansformation>
<transformation><xsltfile>FIXtoOO.xslt</xsltfile><&nsformation>
<transformation><xsltfile>OOtoLang.xslt</xsltfile>rdhsformation>

<transformation><xsltfile>HtmIToText.xslt</xsltfile#xansformation>
</transfor mationChain>

Dan Li, Danning Li, Xiaoshan Li & Volker Stolz 5

Table 1: Measures of the transformations.

Name Number of relations Lines of Develop Modularity
/queries/functions XSLT code person-hours

TextToFix 3 81 3 0

FIXtoOO 6/3/1 181 10 -0.2

SortOO 1/3/3 117 7 0

OOtoLang 10/6/1 444 20 -0.56

Total 20/12/5 857 40 -0.31

With the transformation runner, we load and execute thehlfdes as well as individual XSLT transfor-
mations, on the examples provided on a laptop Intel M330 G#HZ CPU, 3 GB memory, and running
Windows 7 Home. The sizes of examples and the execution fiongenerating C++ code are shown in
Table[2. The execution time includes loading and saving irfidde from/to disk. The DTD definition

(second line) of test4.xml has to be removed first. Exampglst¥ tand test8 are rejected because they are
invalid XML files.

Table 2: Experimental results
Example Size Batch TextToFIX FIXtoOO OOtolLang

(kb) (ms) (ms) (ms) (ms)
testl 0.65 16 <1 <1 15
test2 092 31 <1 15 16
test3 0.56 25 <1 8 16
test4 0.83 47 <1 16 31
test5 5.0 265 3 120 141
test6 12.4 1200 15 590 593

In the following, we briefly evaluate the solution accordindhe evaluation criteria listed in the case
description.

e Complexity The 4 QVT-R transformations of the solution consist of itatd®?0 relations, 12
queries and 5 functions. There are 857 lines of XSLT codergéea: for the transformations.

e Accuracy The generated programs are syntactically correct by @teickthe IDES of correspond-
ing languages. Faestlandtest2 comparing the generated programs with the program test file
provided by the case study shows equivalent structure. ¥denaainually verify the generated pro-
gram code with the original XML examples. So there is a highficience that the transformations
produce semantics preserving results.

e Development effortin total we spent about 40 person-hours in designing thamedels, devel-
oping and debugging the transformations. However, the miwstienging and time-consuming
task is the generation of the HTML model from both the OO meuatel the feature model.

e Fault tolerance:High. Thanks to the XML parser used in the transformatiomasnwe can detect
invalid input XML and display accurate error messages.

e Execution time:As we can see from Tabld 2, the solution works well, but thadf@mation
algorithm also needs to be optimized to convert larger nsochere efficiently.

6 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

e Modularity: The average modularity for the solution is about - 0.31.

e Abstraction level: High, as both QVT-R and the back-end language XSLT are ddalarlan-
guages.

Conclusion

We presented a solution for the "FIXML to Java, C# and C++"ecatudy of TTC 2014. Our so-
lution is founded on the standards introduced by OMG and W8, makes use of well-known and
commonly adopted CASE tools and languages. We hope the ttasevell help to demonstrate that the
graphical notation of QVT-R, a combination of UML object giams and essential OCL expressions,
can be efficiently applied to model transformations in pcact

References

[1] Dan Li, Xiaoshan Li & Volker Stolz (2011)QVT-based model transformation using XSIACM SIGSOFT
Softw. Eng. Note86, pp. 1-8, ddt0. 1145/ 1921532. 1921563

[2] Dan Li, Xiaoshan Li & Volker Stolz (2012)Model querying with graphical notation of QVT relationdCM
SIGSOFT Softw. Eng. Note37(4), pp. 1-8, ddiL0. 1145/ 2237 796. 2237808.

[3] Object Management Group (201 Mteta Object Facility (MOF) 2.0 Query/View/Transformati®pecification,
version 1.1

[4] WWW Consortium (2007)XSL Transformations (XSLT) Version 2.0, W3C Recommemdatigailable at
http:// Ww. W3. or g/ TR 2007/ REC- XsI t 20- 20070123/

http://dx.doi.org/10.1145/1921532.1921563
http://dx.doi.org/10.1145/2237796.2237808
http://www.w3.org/TR/2007/REC-xslt20-20070123/

	Introduction
	Solution design
	FIX text to FIX model transformation
	FIX model to program model transformation
	Program model to program code transformation

	Experiments and Evaluation

