
TTC 2014 c© Dan Li, Danning Li, Xiaoshan Li & Volker Stolz

FIXML to Java, C# and C++ Transformations with
QVTR-XSLT

Dan Li, Danning Li
Guizhou Academy of Sciences, Guiyang, China

Xiaoshan Li
Faculty of Science and Technology, University of Macau, China

Volker Stolz
Department of Informatics, University of Oslo, Norway

QVTR-XSLT is a tool supporting the design and execution of the graphical notation of QVT Rela-
tion. In this paper, we present a solution to the ”FIXML to Java, C# and C++” case study of the
Transformation Tool Contest (TTC) 2014 using the QVTR-XSLTtool.

1 Introduction

The ”FIXML to Java, C# and C++” case study of the Transformation Tool Contest (TTC) 2014 addresses
the problem of automatically synthesizing program code from financial messages expressed in FIX (Fi-
nancial Information eXchange) format. The problem can be broken down into three tasks: 1) generating
FIX model from FIX text file, 2) producing model of program language from the FIX model, and 3) con-
verting the program model to program code of Java, C# or C++. In this paper, the transformation tasks
are tackled with QVTR-XSLT [1], a tool that supports editingand execution of the graphical notation of
QVT Relations (QVT-R) language [3].

As part of the model transformation standard proposed by theObject Management Group (OMG),
QVT-R is a high-level, declarative transformation language. Its graphical notation provides a concise,
intuitive, and yet powerful way to define model transformations. In QVT-R, a transformation is defined
as a set ofrelations (rules) between source and target metamodels, where a relation specifies how two
object diagrams, calleddomain patterns, relate to each other. Optionally, a relation may have a pair
of when- andwhere-clauses specified with an extended subset of Object Constraint Language (OCL)
to define the pre- and postconditions of the relation, respectively. A transformation may also include
queriesandfunctions. Transformations are driven by a single, designated top-level relation.

QVTR-XSLT tool supports the graphical notation of QVT-R andthe execution of a subset of QVT-
R by means of XSLT [4]. The tool supports unidirectional non-incremental enforcement model-to-
model transformations of QVT-R. Features supported include transformation inheritance through rule
overriding, traceability of transformation executions, multiple input and output models, and in-place
transformations. In addition, we extend QVT-R with additional transformation parameter, conditional
relation call and graphical model query [2]. The QVTR-XSLT tool provides agraphical editorin which
metamodels and transformations can be specified using the graphical syntax, and acode generatorthat
automatically generates executable XSLT stylesheets for the transformations. Atransformation runner
is also developed to execute a single or a chain of generated XSLT transformations by invoking a Saxon
XSLT processor. It can display the execution time and generate the execution trace if required.

The rest of the paper is structured as follows: Section 2 introduces the design of a solution for the
case study. We discuss the experimental result and evaluation of the solution against the criteria given in
the case specification in Section 3.



2 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

2 Solution design

Figure 1: Solution overview. Figure 2: Overall transformation process.

Using the graphical editor of QVTR-XSLT, the solution for the case study is designed as QVT-R
transformation modelFIXtoLangwhose outline is shown in Fig. 1. It consists of 4 metamodels and 4
transformations. Among the metamodels,FIXmodelspecifies the structures of both FIX text model and
FIX model,OOmodeldefines the abstract model for the OO program languages, and theLanguageModel
provides the concrete syntax features for each language.

To complete the tasks of the case study, transformationTextToFIXreads a FIX text file and transforms
it to a FIX model (task 1, see Section 2.1), which is subsequently converted into an abstract program
model by theFIXtoOO transformation (task 2, see Section 2.2). In case of C++, theclasses defined in
the program model need to be sorted to ensure a class is declared before being called. Transformation
SortOOis dedicated to this purpose. For the next task, as QVTR-XSLTis mainly designed for model-
to-model transformations, the program model, along with the language concrete feature model, are first
transformed to program code represented as an HTML model that conforms to theHtmlMetaModelof
Fig. 1. Then, a pre-defined XSLT stylesheet generates a plaintext file of the program code from the
HTML model (see Section 2.3). This transformation process,the various artifacts and their relation to
each other, are shown in Fig. 2.

2.1 FIX text to FIX model transformation

FIXML

ABSAttribute

ABSNode

name : String
value : String

XMLAttribute

name : String

XMLNode

+subnodes

0..*

+attributes 0..*

<<Relation>>

FIXtoFIX

{where=nds=node(); NodeToNode(nds,t);}

{isTopLevel}

<<Domain>>

t : FIXML

<<Domain>>

 : FIXML

Figure 3: FIX metamodel. Figure 4: Top relationFIXtoFIX.



Dan Li, Danning Li, Xiaoshan Li & Volker Stolz 3

The very first transformationTextToFIXtakes as input an XML text file and outputs a model of FIX
format. As shown in Fig. 3, we define a single metamodelFIXmodel for both the source and target
models. QVTR-XSLT uses simple UML class diagrams to define metamodels, and requires that a model
has a unique root element, such as theFIXML shown in the Fig. 3. In the metamodel, two elements,
ABSNodeandABSAttribute, specify the structure of the source text model. Their sub-classes,XMLNode
andXMLAttribute, defines the metamodel of the target FIX model. Slightly different from the metamodel
given in the case specification, we usenameproperty instead oftag to specify the tag of a FIX node.

The transformation itself is simple and straightforward. It starts from the top relationFIXtoFIX
(Fig. 4), which constructs the root element of the target model. In itswhereclause, functionnode()is used
to obtain all direct subnodes owned by the root of the source model, and another relationNodeToNodeis
invoked to subsequently map these subnodes. The mapping is mostly one-to-one.

2.2 FIX model to program model transformation

Package

Property

Class

Double
String

<<enumeration>>

Type

name : String

OOElement

order : String

Object
type : Type
value : String

Primitive

+type

<<Relation>>

AttToProperty

{where=regexp=’[-+]?[0-9]*\.[0-9]+’; 
tp=if matches(v,regexp) then ’Double’ else ’String’ endif;}

name = "nm"

value = "v"

att : XMLAttribute

<<Domain>>

 : Class

<<Domain>>

 : XMLNode

name = "nm"

type = "tp"

value = "v"

 : Primitive
attributes

Figure 5: Metamodel of program model. Figure 6: RelationAttToProperty.

Fig. 5 illustrates the metamodel of the program model, whichserves as the target metamodel of the
transformationFIXtoOO. The three programming languages share the same abstract syntax definitions.
In the metamodel, we define a root elementPackagethat contains a set ofClasses. A class ownsProperties
which could be either ofPrimitive type, such asString and Double, or Object of class type. Theorder
property inObject elements indicates the order of a object if there are multiple objects with the same
name.

The challenge of the transformation is that in the source model there may be multiple nodes with the
same tag name. These nodes are distributed throughout the model, and each of them may have a different
set of subnodes. We have to search the whole model to collect all occurrences of this node, union all of
their subnodes to obtain a largest set, and convert the set tothe properties of corresponding class in the
target model. As multiple subnodes with the same tag name mayexist within the same node, a function
is used to count the order of the subnodes, and store the orderin theorder property of theObjectelement.

We tackle the task of Extensions 3.1 of selecting appropriate data types in the relation that transforms
attribute nodes of the source model into primitive properties of target model, as shown in Fig. 6. A regular
expression is used to decide if the valuev is of typeDouble, otherwise it is of typeString.



4 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

2.3 Program model to program code transformation

This task comprises of three steps: 1) sorting class declarations of the program model; 2) transforming
the program model into an HTML model of a particular programming language; 3) rendering the HTML
model to a text file.

Sorting program model. For C++, the class declarations should be ordered so that classes are always
declared before they are used. We design transformationSortOOfor that purpose. It takesOOmodelas
the source- and the target metamodel. The transformation adopts a typical bubble sort algorithm. The
following function is defined for comparison of the pair of adjacent classes:

function Compare(c1:Class, c2:Class) {
result=if c2.#Object.type→includes(c1.name)then c1→union(c2) else c2→union(c1) endif;

}

where the input parameterc1 is located beforec2 in the source model. However, if classc2 does not
include any object of typec1, we considerc2 is “smaller” thanc1 and swap them.

Program model to HTML model. This transformationOOtoLang is extended fromSortOOso the
sorting function can be called if needed. It takes as input a program model and a feature model, and
generates an HTML model for the code of the particular programming language. The feature model,
which conforms to the metamodelLanguageModel, defines the concrete syntax features for each language:

<LanguageDef>
<LangDef name="Java" this="this." String="String" Double="Double" iniVar="true" nul=’null’ orderClass="false" .../>
<LangDef name="C#" this="this." String="string" Double="double"iniVar="true" nul=’null’ orderClass="false" .../>
<LangDef name="C++" this="" String="string" Double="double" iniVar="false" nul=’NIL’ orderClass="true" .../>

</LanguageDef>

In addition, a parameter file is used for the transformation to indicate which language is currently wanted
and the file name of the feature model:

<parameterRoot>
<currentLang>C++</currentLang>
<sourceTypedModel name="languageSpec" file="LanguageDef.xml"/>

</parameterRoot>

HTML model to plain text. A pre-defined simple XSLT stylesheet of about 20 lines of XSLTcode is
used to convert the HTML model of the program code into a plaintext file.

3 Experiments and Evaluation

Using the QVTR-XSLT code generator, we load the QVT-R transformation model and generate for each
transformation a XSLT stylesheet. Some measures of the transformations, such as lines of generated
XSLT code, development efforts, and model modularity, are shown in Table 1.

To execute the transformations, we first define the followingbatch file to chain all the transforma-
tions:

<transformationChain>
<transformation><xsltfile>TextToFIX.xslt</xsltfile></transformation>
<transformation><xsltfile>FIXtoOO.xslt</xsltfile></transformation>
<transformation><xsltfile>OOtoLang.xslt</xsltfile></transformation>
<transformation><xsltfile>HtmlToText.xslt</xsltfile></transformation>

</transformationChain>



Dan Li, Danning Li, Xiaoshan Li & Volker Stolz 5

Table 1: Measures of the transformations.
Name Number of relations Lines of Develop Modularity

/queries/functions XSLT code person-hours

TextToFix 3 81 3 0
FIXtoOO 6/3/1 181 10 - 0.2
SortOO 1/3/3 117 7 0
OOtoLang 10/6/1 444 20 - 0.56

Total 20/12/5 857 40 - 0.31

With the transformation runner, we load and execute the batch file, as well as individual XSLT transfor-
mations, on the examples provided on a laptop Intel M330 2.13GHz CPU, 3 GB memory, and running
Windows 7 Home. The sizes of examples and the execution timesfor generating C++ code are shown in
Table 2. The execution time includes loading and saving model files from/to disk. The DTD definition
(second line) of test4.xml has to be removed first. Examples test7 and test8 are rejected because they are
invalid XML files.

Table 2: Experimental results

Example Size Batch TextToFIX FIXtoOO OOtoLang
(kb) (ms) (ms) (ms) (ms)

test1 0.65 16 < 1 < 1 15
test2 0.92 31 < 1 15 16
test3 0.56 25 < 1 8 16
test4 0.83 47 < 1 16 31
test5 5.0 265 3 120 141
test6 12.4 1200 15 590 593

In the following, we briefly evaluate the solution accordingto the evaluation criteria listed in the case
description.

• Complexity: The 4 QVT-R transformations of the solution consist of in total 20 relations, 12
queries and 5 functions. There are 857 lines of XSLT code generated for the transformations.

• Accuracy: The generated programs are syntactically correct by checked in the IDEs of correspond-
ing languages. Fortest1andtest2, comparing the generated programs with the program text files
provided by the case study shows equivalent structure. We also manually verify the generated pro-
gram code with the original XML examples. So there is a high confidence that the transformations
produce semantics preserving results.

• Development effort: In total we spent about 40 person-hours in designing the metamodels, devel-
oping and debugging the transformations. However, the mostchallenging and time-consuming
task is the generation of the HTML model from both the OO modeland the feature model.

• Fault tolerance:High. Thanks to the XML parser used in the transformation runner, we can detect
invalid input XML and display accurate error messages.

• Execution time:As we can see from Table 2, the solution works well, but the transformation
algorithm also needs to be optimized to convert larger models more efficiently.



6 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

• Modularity: The average modularity for the solution is about - 0.31.

• Abstraction level:High, as both QVT-R and the back-end language XSLT are declarative lan-
guages.

Conclusion

We presented a solution for the ”FIXML to Java, C# and C++” case study of TTC 2014. Our so-
lution is founded on the standards introduced by OMG and W3C,and makes use of well-known and
commonly adopted CASE tools and languages. We hope the case study will help to demonstrate that the
graphical notation of QVT-R, a combination of UML object diagrams and essential OCL expressions,
can be efficiently applied to model transformations in practice.

References

[1] Dan Li, Xiaoshan Li & Volker Stolz (2011):QVT-based model transformation using XSLT. ACM SIGSOFT
Softw. Eng. Notes36, pp. 1–8, doi:10.1145/1921532.1921563.

[2] Dan Li, Xiaoshan Li & Volker Stolz (2012):Model querying with graphical notation of QVT relations. ACM
SIGSOFT Softw. Eng. Notes37(4), pp. 1–8, doi:10.1145/2237796.2237808.

[3] Object Management Group (2011):Meta Object Facility (MOF) 2.0 Query/View/TransformationSpecification,
version 1.1.

[4] WWW Consortium (2007):XSL Transformations (XSLT) Version 2.0, W3C Recommendation. Available at
http://www.w3.org/TR/2007/REC-xslt20-20070123/.

http://dx.doi.org/10.1145/1921532.1921563
http://dx.doi.org/10.1145/2237796.2237808
http://www.w3.org/TR/2007/REC-xslt20-20070123/

	Introduction 
	Solution design
	FIX text to FIX model transformation 
	FIX model to program model transformation 
	Program model to program code transformation 

	Experiments and Evaluation 

