Solving the FIXML Case Study using Epsilon
and Java

Horacio Hoyos!, Jaime Chavarriaga?, and Paola Gomez?
9 9

! Department of Computer Science, University of York, UK.
horacio.hoyos.rodriguez@Qieee.org
2 Universidad de los Andes, Colombia.

{ja.chavarriaga908, pa.gomez398}Q@uniandes.edu.co

Abstract. The Financial Information eXchange (FIX) protocol is de
facto messaging standard for pre-trade and trade communication in the
global equity markets. FIXML, the XML-based specification for FIX, is
the subject of one of the case studies for the 2014 Transformation Tool
Contest. This paper presents our solution to generate Java, C# and C++
source code to support user provided FIXML messages using Java and
the Epsilon transformation languages.

1 Introduction

This paper presents a solution to the 2014 Transformation Tool Contest (TTC)
FIXML case [1]. It consists in a chain of transformation steps that takes a FIXML
message and produces first a model of the XML elements in the message, then
a model of the classes and objects that represent that message, and finally the
corresponding source code in Java, C# and C++. The solution is available as a
Github repositoryﬂ

Our solution is implemented using Epsilorﬁ invoked from a Java application.
Epsilon is an extensible set of languages and tools for model management built
atop the Eclipse Modeling Framework (EMF) [2]. Because it interoperates seam-
lessly with several modelling technologies and file formats, including plain XML
files [3], Epsilon is very suitable for solving the above mentioned case study that
involves processing of XML files and EMF models, before generating source code
based on them.

The remainder of this paper is structured as follows. Section [2] introduces
some of the languages and tools in Epsilon, Section [3| specifies the 2014 TTC
FIXML Case, including some details about the source code to generate, and
Section [4] presents how we use these features to solve the case. Finally, Section
presents an evaluation of our solution, and Section [6] concludes the paper.

3 https://github.com/arcanefoam/fixml
4 http://www.eclipse.org/gmt/epsilon

https://github.com/arcanefoam/fixml
http://www.eclipse.org/gmt/epsilon

2 Epsilon overview

Epsilon includes several task-specific languages for processing and transforming
models, and generating code from models [3]. For instance, among these languages,
the following are the Epsilon languages used in our solution:

— The Epsilon Object Language (EOL), a language with the ability to
access multiple models, query and update model elements, and build new
models from scratch.

— The Epsilon Transformation language (ETL), a declarative language
based on EOL that support the models transformation using rules that map
elements in the source model with the target model elements. In addition,
ETL is capable to transform several source models into several target models.
For our solution, we decided to use ETL in order to transform one source
model into a one target model.

— The Epsilon Generation Language (EGL), a language for templates
that supports the generation of text files combining text fragments and EOL
expressions.

Software developers use these languages to create scripts that take one or
more files or model instances and transform them into other models or into source
code. Later, these scripts can be executed inside the Eclipse IDE or invoked
directly from a Java program, i.e., outside Eclipse. This paper presents a Java
solution that executes Epsilon scripts and may run outside Eclipse.

3 FIXML Case Study

For 2014, the TTC proposes a transformation case based on the FIXML standard
for trading messages. Although the case is explained elsewhere [I], we found
some elements in the generated source code that must be further explained and
specified. This section describes the case study giving additional information
about the features we consider in our solution, in concrete, details about the
source code to generate.

3.1 Overview of the transformation chain

The FIXML case comprises a chain of transformation steps that takes an XML

message and produces the corresponding source code that represent message

elements as classes and message content as an instance created in runtime.
The transformation chain comprises:

— A XML message to XML-model transformation
— A XML-model to Object-model transformation
— An Object-model to source code transformation

3.2 XML message to XML-model transformation

FIXML messages are XML-based documents that includes information about
trading transactions. The first task in the contest is processing a FIXML message
and creating a corresponding XML-model, i.e., an EMF-based model representing
the XML nodes and attributes.

Figure [T] shows the metamodel for the intended XML-model, as it is specified
in the case description [I].

0.1
XMLNode
tag: String
attributes| *
0. * | subnodes XMLAttribute
name: String
value: String

Fig. 1: XML metamodel provided by the FIXML case description

In this metamodel, the type XMLNode represents each tag of the XML mes-
sage, which can have multiples nodes associated to it. In addition, the type
XMLAttribute represents each value provided by each tag of the XML message.

4 4 XML Node PosRpt
4 XML Attribute RptD

<FIXHL> 4 XML Attribute Acct
<FPosRpt RprID="3541" a 4 XML Mode Pty
*;cti;“’ucc . 4 XML Attribute ID
<PLy =" " ORmNDY® S .
<Py ID="99%/> 4 XML Attribute R
<Pty R="38"> 4 4 XML Node Py
<Sub ID="ZZ"/> 4 XML Attribute ID
</Pry> 4 4 XML Node Py
</PosRpt> 4 XML Attribute R
</FIXML> a4 4 XML Node Sub

4 XML Attribute D

Fig. 2: FIXML messsage and the corresponding XML-model

For instance, Figure[2depicts a simple FIXML message and the corresponding
XML-model. On the left side, the FIXML message contains the tag PosRpt with
the attributes RptID and Acct whose values are 541 and 1 respectively. In
addition, this tag PosRpt contains three inner tags named Pty, each one with

different values for its attributes: 1. the first tag, contains the attributes ID and
R with the values OCC and 21, 2. the second tag, contains the attribute ID with a
different value (99), and 3. the third tag, besides having the attribute R, contains
another tag called Sub with the respective attribute information.

Also in the Figure [2| the right side shows the corresponding XML-model,
which is conform to the XML metamodel provided by the case description. This
model includes, for each tag of the original message, an instance of the XML Node
meta-class: one for top-level PosRp tag, three for the inner Pty tags, and another
one for the Sub tag inside the last Pty instance. In turn, each of these XML Node
instances includes a set of XML-Attribute instances according to the values in
the original XML file. For instance, note that the three XML node instances for
the Pty tags include different attributes: one includes XML-attributes for ID and
R, other only an XML-attribute for ID, and the other only one for R.

3.3 XML-model to Object-Model transformation

Once an XML-model is created based on the FIXML message, the next step is
transform this XML-model into a corresponding model that Object-Model, i.e.,
an EMF-based model representing the classes that support the message structure
and the objects that are part of the message.

The FIMXL case description [I] does not specify a concrete metamodel for
the Object-Model. Figure |3| describes the metamodel we are using in our solution.

H model
T name : EString

]

0% |dazzes
g clax attributes H attribute

T narne : EString o T name : Estring

[} 1| attribute
clazz [1 O clazzes

instances | g 0.* | values
H Instance 1 values |H attributevalue

T name : EString | instance 0.* | T text: EString

0”\\’
children

Fig. 3: Object metamodel used in our solution

The root of our Object metamodel is a meta-class named Model, which serves
as a container of all elements. This Model contains a set of Clazz, a meta-class
that represents each class to be created. In turn, each Clazz may be related to

another Clazz, to a set of Attributes and to a set of Instances. Finally, each
Instance may contain a set of AttributeValues.

The mentioned case description [I] defines some informal rules about how the
XML-model must be transformed into a corresponding Object-Model:

— XML tags must be translated into Classes in the target model.
— XML attributes must be mapped to Attributes

— Nested XML tags become Properties (i.e., as member objects or relationships
to other Classes)

Although the mentioned case description does not mention rules about how
to transform the data in the XML to object instances, it provides some examples
that we use to define some additional rules:

— XML nodes must be transformed into Instances of the Class that correspond
to the XML tag.

— values of the XML Attributes must be mapped to Attribute Values of the
Instances.

— In a XML node, nested XML nodes must be transformed into relationships
between the parent instance and the children instances.

4 4 platform:/resource/co.edu.unia
< Model object
a4 4 Clazz PosRpt
4 Attnbute RptlD
4 Attribute Acct
a4 4 Instance PosRpt
> Attnbute Value 541
4+ Attribute Value 1
4 < Clazz Pty
< Attnbute ID
<4 Attribute R
4 Instance Pty
% Instance Pty
4 Instance Pty
4 4 Claz Sub
4 Attribute D
4 Instance Sub

Fig.4: Object Model corresponding to the above FIXML message

For instance, Figure [d] depicts the Object model that corresponds to the XML
model presented in the Figure[2] The model includes a set of Clazz elements, one
for each new XML Node name. In turn, each Clazz contains a set of Instances
representing each XML node. Note that the model includes a Clazz named Pty
that includes three Instances, one for each node of that tag in the original XML
file.

In the model, each Clazz also includes Attributes, one for each attribute in
the corresponding XML nodes. In addition, each Instance member of a class may
include an Attribute Value for each of these attributes. Note that the model
includes, as the root element in the XML document, a Clazz for the PosRpt tag
with the attributes RptID and Acct. At the same time, this Clazz includes an
Instance with the set of Attribute Values 541 and 1 which correspond with
the attributes RptID and Acct respectively. In a similar way, the attributes and
attributes values are treated for each Instance.

3.4 Object-Model to source code transformation

The final step comprises the generation of source code that correspond to the
Object-Model obtained before. The resulting source code must be, at least, in
Java, C# and C++.

The structure and features of the source code to generate is not completely
specified in the FIMXL case description [I]. This description includes some code
examples that we use to establish some requirements about the code to generate.
The following are the requirements we considered in our solution:

For the Java source code

— Every Clazz of the Object-Model must be generated into a different file
named as the name of the class, and with the extension ”.java’.

— The Attributes of a Clazz must be typed as String and declared as private
attributes in the corresponding class.

— For each class, the relationships to other Clazzess are implemented as typed
lists of objects.

— The default constructor for every class creates an instance with attribute
values and relationships that corresponds to the first XML node of the
Object-Model.

— An additional constructor with parameters assigns values to the class at-
tributes.

— Each class includes additional methods to add objects to the object lists.

— The generated classes does not include getters and setters for the other
attributes

For the C# source code

— Classes must be generated in individual ”.cs” files.

— The default constructor for every class corresponds the attribute values and
relationships to the first XML node of the Object-Model.

— An additional constructor with parameters assigns the values given to the
corresponding attributes, its does not consider the relationships.

— In every class, the relationships to other classes must be implemented as a
typed list of objects. An additional method to add objects to the list must
be included in the class.

— The generated classes will not include getters and setters for the other
attributes.

For the C++ source code

— Classes must be generated in pairs of files, a ”.h” file with the class interface,
and a ”.c++" file with the class methods implementation.

— The default constructor for every class must create an object instance with
the attribute values and relationships of the first node of the corresponding
XML tag in the original XML document.

— An additional constructor with parameters must create an object instance
with the specified attribute values.

— In every class, the relationships to other classes must be implemented using
multiple attributes (but not a list). These attributes must be named using
the name of the other class and a consecutive number.

4 Solving the FIXML Case Study using EMF and Epsilon

Our solution was developed with the purpose of providing a stand-alone ap-
plication that accepts an FIXML file and an output folder path as inputs and
generates the required code.

Our solution implements the three-step model transformation chain (MTC):

1. FIXML text to FIXML model transformation
2. FIXML model to Object model
3. Object model to code

4.1 XML message to XML-model transformation

For the first step we used the Java SAX XML parser and EMF to populate the
FIXML model. In the second phase we used an ETL model to model transforma-
tion and in the third phase we used EGL templates for code generation. In the
first phase the SAX XML parser provides XML syntax error detection to inform
the user of malformed input files. Since the SAX parser is event based, each of
the events is used to identify what information has been parsed and using EMF
we create and populate the FIXML model.

4.2 XML-model to Object-Model transformation

In the second step, we use ETL to transform the FIXML model into an Object
model. This transformation deals with the fact that we have to both create clazzes
and instances for each of the tags in the FIXML model. The transformation is a
simple two rule description which uses some of the advanced features of ETL to
accomplish the transformation. Basically each of the FIXML types is transformed
into a set. Each set contains both the object description and the object instance.
Thus, for example, a FIXML Node is transformed into a Clazz and an Instance.
A look-up of previously defined Clazzes ensures that Clazzes are not duplicated.
The same logic applies for Attributes.

4.3 Object-Model to source code transformation

The third step consists of the code generation for which we provide three separate
EGL templates: Java, C# and C++. For this phase, the three generations are
launched in parallel using java threads.

4.4 Executing the solution

The complete solution uses the stand-alone versions of ETL and EGL and can
be runned from the command line. It receives two arguments:

1. Path to the FIXML text file
2. Path to the output folder for generated code (optional)

If the second argument is not supplied the code would be generated in the
same location as the FIXML file adding sub-folders for each of the languages.

5 Evaluation of the Solution

The 2014 TTC FIXML case description [I] defines a set of measures to evaluate the
solutions systematically: Abstraction level, Complexity, Accuracy, Development
effort, Fault Tolerance, Execution Time and Modularity. The following are the
results of evaluating our solution based on these measures.

Abstraction Level. According to the evaluation criteria, the abstraction level
should be evaluated as: 1. High for primarily declarative solutions, 2. Medium
for declarative-imperative solutions, and 3. Low for primarily imperative solu-
tions.

Although our solution combines imperative code in Java to start the execution
of the transformation scripts, these scripts are primarily declarative specifications.
The following table shows the abstraction level for each element in the solution
and an overall value for all the solution.

Element Abstraction Level
Java code to launch transformations Low

XML to XML-model transformation Low
XML-model to Object-model transformation High
Object-model to code transformation High
Overall solution Medium

Complexity. The solution complexity should be measured as the sum of number
of operator occurrences and feature and entity type name references in the
specification expressions.

For the Java code used to take the XML file and create an XML-model,
we measure the complexity ¢ as the sum of e, the number of expressions and
instructions involved in processing the XML tags and create the corresponding
model; 7., the number of references to meta-classes and 7,, the number of
references to meta-class properties.

For the transformation scripts in ETL and EGL, we measure the complexity
c as the sum of e, the number of EOL expressions and functions; r., the number
of references to meta-classes and r,, the number of references to meta-class
properties.

The following table shows the complexity for each element in the solution
and an overall value for all the solution.

Element e |re|rp | Complexity
XML to XML-model 18|28 28
XML-model to Object-model 35823 66
Object-model to code Java 2413 |49 76
C# 22| 3 146 71
C++ 41(6 |64 112
Overall solution 353

Accuracy. According to the evaluation criteria, a solution is valid when 1. the
resulting code is valid in the target languages (syntactic correctness), and 2. that
code represents the source XML data structure and elements (semantic preserva-
tion)..

Our solution is accurate. In order to verify this, we have compiled the
resulting code using the JDK compilerﬂ for the Java code, the Mono compilelﬁ
for the .Net code and GCC/MingWE] for the C++ code.

Development effort. The effort is measured as the time in person-hours spent
in writing and debugging the transformation scripts. The following is a table
detailing the effort of developing each element of our solution.

Regarding the effort spent for the transformations to code, we must clarify that
the first transformation we create was the Object-Model to Java transformation,
and we later use that transformation as a foundation to create and debug the
other transformations to code.

® https://jdk7.java.net/download.html
S http://www.mono-project.com/CSharp_Compiler
" http://www.mingw.org/

https://jdk7.java.net/download.html
http://www.mono-project.com/CSharp_Compiler
http://www.mingw.org/

Element Development effort
XML to XML-model 4h
XML-model to Object-model 2h

Java 2h
Object-model to code C# 1h

CH+ 4h

Fault tolerance. Fault tolerance is classified as 1. High if transformation is able
to detect invalid input XML and produce accurate error messages; 2. Medium
if erroneous files produce a failed execution with an indication that some error
occurred; and 3. Low if such files are processed and output produced without
warnings being issued.

Regarding Fault Tolerance, our solution is High. Basically, it detects erroneous
XML files and present information about the error. For instance, the “test7.xml”
and “test8.xml” are erroneous XML file. Our application reports the following
errors for these files:

Test file Error message

Fatal Error: URI=file:/.../test7.xml Line=14: The
element type "Sndr" must be terminated by the
matching end-tag "</Sndr>". The respective classes
where not created.

Fatal Error: URI=file:/.../test8.xml Line=19: The
test8.xml end-tag for element type "Order" must end with a ’>’
delimiter. The respective classes where not created.

test7.xml

Ezxecution time. The execution time is measured as the milliseconds spent for
executing each of the three stages with the provided FIXML files. In addition,
we measure the time spent for initializing the EMF metamodels, a task that is
performed once in our application but must be executed for each step when these
steps run separately.

The following table shows the execution time of our solution. For each trans-
formation time, this measures include the loading of models and the printing of
output code from the application. These measures is the average execution time
of ten (10) consecutive executions of the application with the specified message.

Modularity. According to the evaluation criteria, the modularity m should be
measured as m = 1 — (d/r), where d is the number of dependencies between rules
(implicit or explicit calls, ordering dependencies, inheritance or other forms of
control or data dependence) and r is the number of rules.

For the XML to XML-model transformation, the Java code consists of a class
with event-handler methods, i.e., a class with methods that must be invoked,
during the processing of an XML document, at the start of the document, at the

. XML XmlModel |ObjectModel

Test file Init EMF to XmlModel|to ObjectModel to code
testl.xml 767.9 249.7 696.0 804.1

test2.xml 751.0 256.9 901.0 1055.9
test3.xml 770.2 262.7 796.5 1256.8
test4d.xml 745.4 375.5 2995.9 2382.7
test5.xml 779.8 323.6 1643.9 1471.9
test6.xml 745.4 375.5 2995.9 2382.7

start of a node, at the end of a node and at the end of the document. Considering
this, we measure the number of rules as the number of event-handler methods
(i.e., r = 4). Because these methods does not invoke one to the other, we consider
that there is not any dependencies among these rules (i.e., d = 0).

In ETL, each rule can use the equivalents method to obtain the model elements
produced by other rules. Thus, we measure the dependencies d as the number
of times that the equivalents method is used in all the rules. For instance, the
XML-model to Object-model transformation uses only three rules (i.e., r = 3)
but all these rules uses the equivalents method four times (i.e., d = 4). Using the
above mentioned formula, the modularity correspond to —0.33.

In EGL, the code is generated using text templates where special tags denote
where some text must be replaced by values from the model. In addition, an
operation is a reusable text template that can be included as a part of any
other template. For the EGL scripts, we measure r as the number of operations,
including the main template, and d as the number of times that an operation
invokes another operation. For instance, the Object-model to java code transfor-
mation includes a main template and three operations (i.e., r = 4) and all these
operations invokes other operations five times (i.e., d = 5). That means that the
modularity correspond to —0.25.

The following table details the measures for modularity of our solution.

Element r| d |Modularity
XML to XML-model 410 1
XML-model to Object-model 3|4 —0.33
Object-model to code Java 4|5 -0.25
C# 4] 5 -0.25
CH++ 8|10 -0.25

6 Conclusions

We have developed and discussed an Epsilon-based solution to the TTC 2014
FIXML case. It includes a series of transformation scripts structured as requested
by the case description, i.e., there is a generic XML-to-XMLModel transformation,

an XMLModel-to-ObjectModel transformation, and an ObjectModel-to-Text
transformation.

In addition, we have presented an evaluation of our solution considering a set
of predefined quality attributes. This evaluation will be useful to compare our
solution to other proposed in other languages or by other authors.

References

1. Lano, K., Yassipour-Tehrani, S., Maroukian, K.: Case study: FIXML to Java, C#
and C++. In: Transformation Tool Contest 2014. (2014)

2. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. 2 edn. Addison-Wesley Professional (2008)

3. Kolovos, D., Rose, L., Garcia-Dominguez, A., Paige, R.: The Epsilon Book (2014)

	Solving the FIXML Case Study using Epsilon and Java
	Introduction
	Epsilon overview
	FIXML Case Study
	Overview of the transformation chain
	XML message to XML-model transformation
	XML-model to Object-Model transformation
	Object-Model to source code transformation

	Solving the FIXML Case Study using EMF and Epsilon
	XML message to XML-model transformation
	XML-model to Object-Model transformation
	Object-Model to source code transformation
	Executing the solution

	Evaluation of the Solution
	Conclusions

