
A Model-Driven Solution for Financial Data Representation
Expressed in FIXML

Vahdat Abdelzad
University of Ottawa School of

Electrical Engineering and Computer
Science, Ottawa, Canada

v.abdelzad@uottawa.ca

Hamoud Aljamaan
University of Ottawa School of

Electrical Engineering and Computer
Science Ottawa, Canada
hjamaan@uottawa.ca

Opeyemi Adesina
University of Ottawa School of

Electrical Engineering and Computer
Science Ottawa, Canada

oades013@uottawa.ca

Miguel A. Garzon
University of Ottawa School of

Electrical Engineering and Computer
Science, Ottawa, Canada

mgarzon@uottawa.ca

Timothy C. Lethbridge
University of Ottawa School of

Electrical Engineering and Computer
Science, Ottawa, Canada

tcl@eecs.uottawa.ca

ABSTRACT
Accuracy of knowledge and information elicited via financial data
processing is crucial to decision-making. In order to achieve this,
we propose a solution based on the Umple modeling language for
the Financial Information eXchange protocol (FIXML). The
proposed solution includes syntactic and semantic analysis and
automatic code generation developed in a test-driven approach.
The solution also provides real-time visualization for FIXML
documents. We then discuss our solution based on the following
quality factors: development effort, modularity, complexity,
accuracy, fault tolerance, and execution time. Finally, we applied
our technique to the set of FIXML test cases defined in the
FIXML case study, and we evaluated the results based on error
detection and execution time.

Keywords
Model-Driven Development (MDD), Umple, FIXML, Automated
Code Generation, Model Transformation.

1. INTRODUCTION
Accuracy of knowledge or information elicited via financial data
processing is crucial to decision-making and prediction of
investments and market trends by investors and portfolio
managers in the financial domain [12]. Achieving this goal may
be difficult or impossible without automated, dependable,
flexible, and scalable implementation solutions for managing and
processing huge volume of data emanating from daily market
transactions. On this premise, the field of information processing
has evolved with various approaches such as, data mining [7], and
fuzzy logic [5] in order to reduce complexity experienced in
processing high data volume. Virtually all approaches to process
and gain knowledge for decision-making require or depend on
software-controlled systems. Model-based design and automated
code generation (or auto-coding) methods [6, 11], thereby
provides inter-connected partial solutions to developing these
systems with minimum effort and defects. Proponents of these
methods [4, 6, 8], argue that they tend to deliver quality artifacts;
because of their promises of higher productivity, reduced turn-
around times, increased portability, and elimination of manual
coding errors.

This paper provides a transformation solution to an electronically
financial transactions expressed FIXML format. Our
transformation approach reverse engineers FIXML data into
Umple model, which then translates into targeted programming
languages (e.g. Java). In this transformation, according to OMG
levels Umple is seen as M1 level with Umple classes representing
FIXML schema. Umple [2, 3] is an open-source code generation
and modeling tool we have adopted for FIXML [17]
transformation. Our choice of Umple is based on its strengths and
philosophies. Firstly, the lightweight capabilities of Umple allow
modelers and programmers to seamlessly build applications [2] by
embedding code within the textual model, which is impossible
with traditional solutions. Secondly, according to [10] Umple has
been developed with a focus on three key qualities: usability,
completeness, and scalability. Usability has been considered key,
because we want to facilitate rapid modeling with fewer defects.
Moreover, it is important to be able to model systems of arbitrary
size and manage models without slowing down. These are
prerequisite to any successful tool for generating code from a
plethora of data, which is usually generated, and often require
processing from the financial domain. Thirdly, the integration of
FIXML to Umple only requires us to define a grammar to parse
instances of its meta-model. Fourthly, Umple cannot only
generate Java and C++, as the solution demanded, but also SQL,
PHP and Ruby from the textual representation of FIXML data.
Umple achieved these benefits; since it was written in itself,
which gives it ability to construct automatically internal model
representation of the input text.

Our solution allows input FIXML text to be processed in all its
development environments, including UmpleOnline [16], its
Eclipse plugin, or its command-line tool. Umple’s parser analyses
the input text statically against the defined FIXML grammar.
Upon successful static analysis, Umple constructs the internal
model of the input text as an instance of Umple’s own metamodel.
This is then used to generate the target languages. The results
obtained from the test cases have shown that the code generated is
syntactically and semantically accurate, and also robust,
discovering invalid inputs in given test cases #3, #4, #7, #8 [14].

We corrected these cases and presented the time taken to generate
actual code from all the given test cases.

The rest of this paper is organized thus: in Section 2, we present
more detailed information about Umple. In Section 3, 4, and 5, we
present detailed information about our solution, results and
evaluation, and conclusions respectively.

2. UMPLE
Umple allows textual modeling in UML and can be seen as both a
modeling and a programming language. Umple allows you to
specify elements such as the following:

 Classes and Interfaces

 Associations: Umple supports multiplicity constraints
and manages referential integrity.

 Attributes: Can be constrained in various ways.

 State Machines: Transitions, entry/exit actions, nested
and concurrent states, and do activities.

 Aspect Orientation: Code that can be run before or after
Umple-defined actions on attributes, associations, and
the elements of state machines.

 Tracing: Sublanguage of Umple. It allows developers to
specify tracing at the model level.

 Patterns such as singleton and immutable.

Umple generates code in Java, PHP, C++, Ruby, and SQL. It also
generates API documentation, metrics and various diagram types.

The Umple team has formulated a number of philosophies that
direct its research vision [1].

The first philosophy is that Umple sees modeling as programming
and vice versa. With Umple, UML can be expressed textually and
so a modeler can see UML visually and textually, while a
programmer can see UML coded abstractly.

The second philosophy is that there is no need for round tripping
(i.e. editing generated code), since any special-purpose code can
be embedded in Umple as necessary. The third philosophy is that
usage of Umple can start from an existing system and UML
constructs can be added incrementally. Hence, Umple will parse
programming languages code as part of Umple code. The fourth
philosophy states that Umple goes beyond UML boundaries; for
instance Umple directly implements patterns and other common
programming idioms.

The fifth philosophy states that base language code added to an
Umple program corresponds to UML’s concept of an action
language. Development in Umple can take a bottom up approach
starting with code, and add UML constructs as he gains
confidence, or a top-down approach in which a developer can
start by writing UML constructs in Umple and then iteratively add
code for algorithmic operations.

We provide developers with three types of tools to develop
systems using Umple:

 An Eclipse plugin. This gives developers the full
power of the Eclipse environment as they use Umple.

 UmpleOnline. This is an interactive website [16] that
allows anyone to instantly experiment with Umple on
the web. It has two panels; one for Umple textual code
and another for visualizing UML constructs. The user
can explore examples or create his or her own and save
them in the cloud. UML diagrams are generated as the
user types.

 Command-line based compiler. This allows Umple
developers to compile their Umple systems from
command line.

The tools and language to implement Umple are built using a test-
driven approach. This approach enabled our team to quickly
develop a functional version of the language, without hindering
future development or features, and without breaking other
aspects of Umple. Test Driven Development (TDD) enables the
software to evolve based on feedback received from early
adopters, and has enabled our team to use early versions of the
Umple language to develop and enhance future versions. The
Umple toolset and language, which were originally written in
Java, were long ago fully rewritten in Umple, and is now
developed and maintained in Umple itself.

The Umple internal components include: a parser, an analyzer
that generates an instance of Umple’s metamodel from the parse
tree, synchronization engine (to allow diagrams to be edited and
the resulting changes being applied to the text) as well as several
code generators and model-to-model transformation engines.

The Umple testing process in Figure 1 is capable of testing all
artifacts within the scope of Umple. In other words, we test
Umple as well as representative systems created using Umple.

Figure 1. Umple Components

At present, there are over 3280 tests that span all components of
the Umple infrastructure. Testing the Umple Parser is centered on
the tokenization of Umple code. The tests in this area ensure that
Umple models parsed and tokenized as we expect. Testing the
metamodel classes ensures that Umple will be able to maintain
valid internal representations of a model. Testing the code
generators ensures that we generate valid base language code (i.e.
Java, C++, PHP, etc.). This is done by comparing the expected
code versus the actual generated code. Here, we are testing that
the syntactic translation of the Umple metamodel instance into the
generated base language is correct. Finally, we use a test bed of
Umple code to test whether that code behaves as expected.

3. OUR SOLUTION TO THE FIXML
CHALLENGE
To solve the problem presented in this challenge, we define an
extension to the Umple grammar to parse FIXML documents, and

process them such that they become instances of Umple’s own
internal metamodel.

We use Umple’s mixin capability to inject algorithms for analysis
of the FIXML input into Umple’s semantic analyzer. The mixin
capability helps us not to alter base Umple code but allows us to
create the FIXML extension as a separate concern. The Umple
mixin mechanism automatically adds the algorithms to the core of
Umple.

The first critical step in our process is to create valid models from
FIXML documents. To achieve this, we need to perform syntactic
and sematic validation of FIXML documents. In order to support
this, we validate FIXML document in two phases. In the first
phase, our parser verifies that we have a syntactically valid
FIXML document; it produces an internal syntax tree but does not
cover semantic checking yet. In the second phase, we do semantic
checking for FIXML documents. This validates that we have the
same opening and ending tag names, for example. In the second
step of having a valid model, we get help from Umple meta-
model which bring us semantic constraints in order to have a valid
model and also generate completely valid code for target
programming languages.

For syntactic validation, we have defined a set of grammars to
parse FIXML documents. The FIXML grammar is shown in
Listing 1. Umple has its own EBNF syntax [13] which has special
features adapted to processing source that contains multiple
languages.

Listing 1. Umple Grammar for FIXML

fixml: [[fixmlDefinition]] | [[fixmComment]] | [[fixmlDoc]]
fixmComment: <?xml [[tagDefinition]]* ?>
fixmlDoc: <! [**value] >
fixmlDefinition: <FIXML > [[fixmlContent]]* </FIXML>
fixmlContent: [[endContent]] | [[extendContent]]
endContent: < [~name]�([[tagDefinition]])* />
extendContent: < [~name] ([[tagDefinition]])* > (

[[endContent]] | [[extendContent]] | [[attContent]])* < (/)
[~name] >

tagDefinition: [name] = "[**value]"
attContent: < [~name] > [**value:\<] < (/) [~name] >

In Listing 1, the rule name ”fixmlDefinition” is composed of a
symbol ”<FIXML>”, followed by a non-terminal called
”fixmlContent”, then the symbol ”</FIXML>”. This rule is the
main rule which Umple’s parser detects FIXML documents and
parses them. We use single square brackets (”[” and ”]”) to match
various types of tokens such as identifiers, and double square
brackets (”[[” and ”]]”) for rule-based non- terminals. Rules
names are added to the tokenization sequence. Symbols (e.g.
terminals), such as ”<FIXML>” are used in the analysis phase of
the parsing (to decide which parsing rule to invoke), but they are
not added to the resulting tokenization string for later processing.

Our grammar syntax allows for rapid language creation. The
language authors do not need to worry about the complex,
repetitive and error prone regular expressions used to define

common structures such as string sequences, decimal numbers,
alphanumeric strings, and arbitrary code blocks as would be
required when using other parsers like Antlr [1].

In our solution, we consider tag attributes to be Umple attributes
for our model. In the process of analysis, we detect the type of
attributes (Integer, Double, and String) and use the correct Umple
types for those attributes. This brings us correct and robust model
and code generation. By using this capability, we can detect the
majority of mistakes in the values of attributes. Moreover, we
automatically create related set and get methods for those
attributes. Indeed, we define attributes with private visibility and
implement automatically related set and get methods so as to
support data encapsulation. For example, Listing 2 shows a
FIXML document in which there is a tag with three attributes.
According to the values of attributes, we have two integer
attributes and one float attribute. The generated code for the
FIXML document in Listing 2 is represented in Listing 3. We
removed set and get methods and other codes because of space
limitation. All generated code can be obtained online through
UmpleOnline [16].

Listing 2. A sample FIXML document

<FIXML>
 <Order ClOrdID="123456" Side="2" Px="93.25">
 </Order>
</FIXML>

Listing 3. Java code with proper attribute types

class Order{
 private int ClOrdID;
 private int Side;
 private double Px;
 //The rest of code
}

In the proposed solution in [9], Lano et al. used an instance
variable in generated code for every nested tag in FIXML
documents. This approach is also applied to the nested tags with
the same name (which results in the same objects). Listing 4, for
example, shows three nested tags with the same name called Pty.
The generated code for Java based on the solution proposed in [9]
is shown in Listing 5. In Listing 5, we can see that there are three
instance variables and a constructor with three parameters. This
approach is not correct for large FIXML documents and also it
doesn’t have a good code implementation for associations in
model-driven development. In fact, when we have a large FIXML
document with a tag which has more than 255 nested tags, this
approach will not work. According to the solution in [9], we
should add all of those object instances as parameters to the
related class constructors. However, it is impossible because we
have a limitation in the number of parameters in programming
languages (e.g. limitation of 255 words for method parameters in
Java). We have tackled the issues with the concepts of association
in the model and arrays as inputs for those same objects in the

implementation. Listing 6 shows our generated code in which we
have just an instance variable and a constructor with a parameter.
This removes the limitation related to the number of parameters in
programming languages. On the other hand, we have just an
instance variable which helps us not to lose the model-driven
meaning of associations even in the generated code. It means that
we have an instance variable for each association without worries
about multiplicity.

Listing 4. Umple Grammar for FIXML

<PosRpt>
 <Pty ID="OCC" R="21"/>
 <Pty ID="99999" R="4"/>
 <Pty ID="C" R="38"/>
</PosRpt>

Listing 5. Java code generated by the solution in [9]

class PosRpt {
 Pty Pty_object_1 = new Pty("OCC","21");
 Pty Pty_object_2 = new Pty("99999","4");
 Pty Pty_object_2 = new Pty("C","38");
 PosRpt (Pty Pty_1, Pty Pty_2, Pty Pty_3){
 this.Pty_object_1 = Pty_1;
 this.Pty_object_2 = Pty_2;
 this.Pty_object_3 = Pty_3;
 }
 PosRpt (){
 }
}

Listing 6. Java Code generated by our proposal

class PosRpt{
 private List<Pty> Pty_Object;
 public PosRpt(Pty... allPty_Object)
 {
 Pty_Object = new ArrayList<Pty>();
 boolean didAddPty_Object = setPty_Object(allPty_Object);
 }
 public PosRpt()
 {
 Pty_Object.add(new Pty("OCC", 21));
 Pty_Object.add(new Pty("99999", 4));
 Pty_Object.add(new Pty("C", 38));
 }
}

4. RESULTS AND EVALUATION
In this section, we present the results and evaluation of our
implementation solution based on the following parameters:
development effort, modularity, complexity, accuracy, fault
tolerance, and execution time.

4.1 Development Effort, Modularity, and
Complexity
In the design and implementation of our solution, we raised the
level of abstraction, and minimized development time as well as
complexity for future changes to a considerable level amount of
time. To achieve these qualities, we defined a simple grammar for
parsing FIXML documents. Umple uses the defined grammar for
automatic construction of a parse tree representing the input text
and generates a model that is independent of any target language.
We achieved this with minimum effort and belief that future
extension or modification will require minimum effort too.

4.2 Accuracy
The code generated from any given FIXML text, in every target
language supported by our solution, conforms to their native
syntax and semantics. We achieved syntactic conformance by
invoking static analyzer embedded in Umple compiler. . With this
approach we were able to uncover errors and modify our
implementation to certify syntactic correctness of the generated
code. In the same vein, we have adopted the concept of
associations in order to preserve semantics as expected. With
Umple, creation of links by associations ensures that unique
names are created for every instance variables of the same class
and preserves the underlying semantics.

4.3 Fault Tolerance
Our solution is robust and detected malformed FIXML documents
provided as the test cases. The solution parses all the test cases
available at [14], after some modification to some of the test
cases. The solution we developed parses test cases #1, #2, #5 and
#6 without modification. However, the remaining set of test cases
requires some modification.

Firstly, test case #3 failed because the <Order> tag was closed
with “<Order>” tag instead of “</Order>”. Secondly, test case
#4 failed because version and unicode values were quoted with
single quotes. We made modification by changing the quotes from
single to double. Thirdly, test case #7 failed because the <Order/>
tag was given, instead of “<Order>”. Lastly, test case #8 failed for
the following reasons. The tag “<FIXML>” was not closed with
the corresponding “</FIXML>” tag. Its “<Order>” tag was not
closed with the corresponding “</Order>”. There was no
matching tag for the corresponding “</OrderMessage>” tag. The
“<Hdr>” tag was closed with an “<Hdr>” tag, instead of
“</Hdr>”. We corrected these malformed tags In order to verify
our solution, you may visit [15].

4.4 Execution Time
We have instrumented our compiler with a Timer to measure the
time taken to process an input file and produce the target source
code. More specifically, the Timer measures the time taken to 1)
parses an input file, 2) to analyze and build an instance of the
Umple metamodel and 3) to generate code which involves
creating a file (.Java, .C++, etc.).

Table 1 summarizes the executions times in milliseconds, for each
of the eight FIXML test cases [14]. The executions times have
been split to reflect the three main stages of the transformation
process: parsing the FIXML code, analyzing the tokens to build
an instance of the Umple metamodel, and generating Java code
(one of our target languages). The tests were executed on a
machine exhibiting the following characteristics:

 Intel Core i5-2400 CPU @ 3.10GHz

 RAM: 8.00 GB

 Windows 8 - 64 bits

As presented in the table, the parsing and analyzing times are
constant for most of the cases, showing that our technique gives
good performance results even for larger inputs, as is the case for
the test #8. The code generation stage results depend on the size
of the file generated (Java files in this case) and this explains the
variations in the execution times.

5. DEMONSTRATION
As mentioned in Section 3 of this paper, it is possible to create an
Umple model using one of our three tools: the Eclipse plugin, the
command-line based compiler or the web-based application
named UmpleOnline [16]. The quickest way to compile and
generate code with Umple is to go to UmpleOnline, and copy-
paste one of the eight FIXML test cases [14] into the code editor
(left-pane). As shown in Figure 2 you can visualize the
corresponding UML class diagram with attributes and
associations between objects (right pane) and/or generate code. At
this moment, Umple supports code generation in Java, C++, PHP,
Ruby, Ecore and SQL (to create your database tables based on
your model). Umple not only gives you a high-quality code
implementation but also a way to better visualize your models.

To use the command-line tool, you can download it at
http://dl.umple.org, and run the command: "java –jar umple.jar
YourTestcase.ump”. The command-line tools and the Eclipse
plugin process files that conventionally have the extension .ump

6. CONCLUSION
In this paper, we proposed and implemented a solution for
automatic object-oriented code generation for financial data
representation expressed in FIXML. In order to achieve this, we
utilized Umple, which includes mechanisms for parsing, analysis,
and automatic code generation. Extending the Umple grammar to
support FIXML satisfied the requirement for accurate syntactic
processing of FIXML documents and also provides a flexible path
for ongoing modification. Umple automatic code generation
supports several programming languages and other software
artifacts. Our solution also provides a real-time visualization for
FIXML documents without code generation. This visualization
includes UML class diagrams showing classes, attributes, and
associations and inheritance relationships between those classes.

7. REFERENCES
[1] Antlr Technology: 2014. http://www.antlr.org/.

[2] Badreddin, O. 2010. Umple: a model-oriented programming
language. 2010 ACM/IEEE 32nd International Conference
on Software Engineering. 2, (2010), 337–338.

[3] Badreddin, O., Forward, A. and Lethbridge, T.C. 2012.
Model oriented programming: an empirical study of
comprehension. Proceedings of the 2012 Conference of the
Center for Advanced Studies on Collaborative Research
(2012), 73–86.

[4] Czarnecki, K. and Eisenecker, U. 2000. Generative
Programming: Methods, Tools, and Application. Addison-
Wesley.

[5] Daniel, S. and Tettamanzi, A.G.B. 2006. Reasoning and
Quantification in Fuzzy Description Logics. Fuzzy Logic and
Applications, 6th International Workshop, WILF (2006), 81–
88.

[6] Denney, E. and Fischer, B. 2009. Generating Code Review
Documentation for Auto-Generated Mission-Critical
Software. Third IEEE International Conference on Space
Mission Challenges for Information Technology (Jul. 2009),
394–401.

[7] Grossman, R. and Gu, Y. 2008. Data mining using high
performance data clouds. Proceeding of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining - KDD 08 (New York, New York, USA,
Aug. 2008), 920.

[8] Kleppe, A., Warmer, J. and Bast, W. 2003. MDA Explained:
The Model Driven Architecture: Practice and Promise.
Addison-Wesley.

[9] Lano, K., Yassipour-Tehrani, S. and Maroukian, K. Case
study: FIXML to Java, C# and C++. Transformation Tool
Contest - ttc2014.

[10] Lethbridge, T.C. 2013. Key Properties for Comparing
Modeling Languages and Tools : Usability , Completeness
and Scalability. Comparing Modeling Approaches at
MODELS 2013 (2013).

[11] Nakićenović, M.B. 2012. An Agile Driven Architecture
Modernization to a Model-Driven Development Solution-An
industrial experience report. International Journal On
Advances in Software. 5, 3, 4 (2012), 308–322.

[12] O’Brien, J. 1970. How market theory can help investors set
goals, select investment managers and appraise investment
performance. Financial Analysts Journal. 26, 4 (1970), 91–
103.

[13] Syntactic metalanguage -- Extended BNF Standard: 2014.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=261
53.

[14] Transformation Tool Contest - ttc2014-fixml GitHub: 2014.
https://github.com/TransformationToolContest/ttc2014-
fixml/tree/master/test_cases.

[15] Umple home page: 2014. http://www.umple.org.

[16] UmpleOnline: 2014.
http://cruise.eecs.uottawa.ca/umpleonline/.

[17] 2012. FIXML 4.4 Schema Version Guide.

Table 1. Execution time for the eight Fixml test cases

 Execution Time (in ms)

Component Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7 Case #8

Parsing 314 333 324 331 396 607 322 329

Analyzing 17 20 18 20 27 41 17 18

Generating
Java Code

198 430 265 294 1543 3572 221 214

Total Time: 529 783 607 645 1966 4220 560 561

Figure 2. Test case #2 [14] loaded in UmpleOnline – http://try.umple.org

